
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#3 – Due at the beginning of class Thursday 02/27/14

1. Consider a model of a nonbipartite undirected graph in which two particles (starting
at arbitrary positions) follow a random walk i.e. with each time step both particles
uniform randomly move to one of the neighbors. Prove that the expected time until
they collide is O(n6). A collision is when both particles are on the same node at the
same time step.

2. Let A be a n×n matrix, B a n×n matrix and C a n×n matrix. We want to design an
algorithm that checks whether AB = C without calculating the product AB. Provide
a randomized algorithm that accomplishes this in O(n2) time with high probability.

3. Given a connected, undirected graph G = (V,E) and a set of terminals S = {s1, s2, . . . , sk} ⊆
V , a multiway cut is a set of edges whose removal disconnects the terminals from each
other. The multiway cut problem asks for the minimum weight such set. The problem
of finding a minimum weight multiway cut is NP-hard for any fixed k ≥ 3. Observe
that the case k = 2 is precisely the minimum s− t cut problem.

Define an isolating cut for si to be a set of edges whose removal disconnects si from
the rest of the terminals. Consider the following algorithm

• For each i = 1, . . . , k, compute a minimum weight isolating cut for si, say Ci.

• Discard the heaviest of these cuts, and output the union of the rest, say C.

Each computation in Step 1 can be accomplished by identifying the terminals in
S − {si} into a single node, and finding a minimum cut separating this node from si;
this takes one max-flow computation. Clearly, removing C from the graph disconnects
every pair of terminals, and so is a multiway cut.

(a) Prove that this algorithm achieves a 2− 2/k approximation.

(b) Prove that this analysis is tight by providing an example graph where the approx-
imation bound is exactly achieved.

4. Consider variants on the metric TSP problem in which the object is to find a simple
path containing all the vertices of the graph. Three different problems arise, depending
on the number (0, 1, or 2) of endpoints of the path that are specified. If zero or one
endpoints are specified, obtain a 3/2 factor algorithm.

Hint. Consider modifying Christofides algorithm for metric TSP.

5. Recall the minimum vertex cover problem: given a graph G(V,E) find a subset S∗ ⊆ V
with minimum cardinality such that every edge in E has at least one endpoint in S∗.
Consider the following greedy algorithm. Find the highest degree vertex, add it to the
vertex cover S and remove it along with all incident edges. Repeat iteratively. Prove
that this algorithm has an unbounded approximation factor i.e. for any c there exists
an input graph G such that |S| ≥ c OPT.



6. Recall that to show a problem X is NP-complete we must show that it is in NP and
construct a polynomial-time computable function that maps inputs of a known NP-
complete problem to inputs of X (e.g. 3-SAT ≤p X) in a way that preserves problem
satisfiability. The last statement would imply that all problems in NP are polynomial
reducible to X, hence X is NP-complete.

(a) Integer Programming (IP) decision problem asks whether there exists an integer
solution x satisfying linear constraints Ax ≤ b and with objective value cTx at
least k. Prove that IP is NP-complete.

(b) The Clique decision problem asks whether a clique (a complete subgraph) of size
k exists in given graph G. Prove that Clique is NP-complete.

(c) Consider a modified version of Clique in which all vertices have degree at most 3.
Is this problem NP-complete? Why or why not?

(Hint: Use an NP-Complete problem from class)

7. (a) An oriented incidence matrix B of a directed graph G(V,E) is a matrix with
n = |V | rows and m = |E| columns with entry Bve equal to 1 if edge e enters vertex
v and −1 if it leaves vertex v. Let M = BBT . Show that for any i ∈ {1, . . . , n},

detMii =
∑
N

(detN)2,

where Mii = M\{ith row and column}, and N runs over all (n − 1) × (n − 1)
submatrices of B\{ith row}. Note that each submatrix N corresponds to a choice
of n− 1 edges of G.

(b) Show that

detN =

{
±1 if edges form a tree

0 otherwise

This implies that t(G) = detMii, where t(G) is the number of spanning trees of
G. In this definition of a tree, we treat a directed edge as an undirected one.

(c) Show that for the complete graph on n vertices Kn,

detMii = nn−2.
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