CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)
HW#3 — Due at the beginning of class Thursday 03/02/17

1. Consider a model of a nonbipartite undirected graph in which two particles (starting
at arbitrary positions) follow a random walk i.e. with each time step both particles
uniform randomly move to one of the neighbors. Prove that the expected time until
they collide is O(n®). A collision is when both particles are on the same node at the
same time step.

Solution: Let G(V,E) denote the graph in question; we construct a new graph
H(W,F) in which an ordinary single particle random walk corresponds to the two
particle random walk on G. Take W = V x V = {(vy,v9)|v1,v9 € V} and F =
{((v1,v2), (w1, w2))|(v1,w1), (v2,we) € E}. The idea here is that a uniform random
walk on H encodes the state of a two particle random walk on G (in the same way
that a random walk on the path graph encodes the state of a drunk). Given a starting
configuration v = (vy, v9) € W the expected time until the particles collide is bounded
by the hitting time to the vertex u = (vy,v,) € W. This hitting time is bounded by
the cover time of H, i.e.

how < C(H) = O(IWP) = O(n®).

2. Let A be an xn matrix, B an xn matrix and C' a n x n matrix. We want to design an
algorithm that checks whether AB = C' without calculating the product AB. Provide
a randomized algorithm that accomplishes this in O(n?) time with high probability.

Solution: Pick z € {0,1}" such that z; = 1 with probability 3.

1. compute y = Bx, z = Ay, w = Cx
2. if z = w return false
3. return true

First note that it takes O(n?) time to compute all the above matrix vector multi-
plications. Also note that we avoid roundoff error. Computing w and y involves no
multiplication and there is no error in the computation of z assuming that AB can be
computed exactly.

Now, if AB — C = 0 the algorithm is always correct. So, assume AB — C' # 0. We
compute the probability that the algorithm returns true,

P(z =w) = P(ABx = Cx) = P((AB—C)z =0).

Let D = AB — C and let d; be the i row of D. We have that that

P(Dxz =0) < P(d"'z =0)
= P(_ dijz; = 0)
j
< P(Z dijxj = 0|.I’2, . ,LCn)
j
1
S 2

where the last step comes from the fact that we are only free to pick x; which has
probability of % regardless which value we pick. Thus the probability we make a
mistake is P(z = w) < ;. Repeating the algorithm some constant & times (say 10) we
bound the probability of error by 2% ~ 0.001.

. Given a connected, undirected graph G = (V,FE) and a set of terminals S C V,
S = {s1,82,..., 8}, a multiway cut is a set of edges whose removal disconnects the
terminals from each other. The multiway cut problem asks for the minimum weight
such set. The problem of finding a minimum weight multiway cut is NP-hard for any
fixed £ > 3. Observe that the case k = 2 is precisely the minimum s — ¢ cut problem.

Define an isolating cut for s; to be a set of edges whose removal disconnects s; from
the rest of the terminals. Consider the following algorithm

e For each i =1,...,k, compute a minimum weight isolating cut for s;, say C;.

e Discard the heaviest of these cuts, and output the union of the rest, say C.

Each computation in Step 1 can be accomplished by identifying the terminals in
S — {s;} into a single node, and finding a minimum cut separating this node from s;;
this takes one max-flow computation. Clearly, removing C' from the graph disconnects
every pair of terminals, and so is a multiway cut.

(a) Prove that this algorithm achieves a 2 — 2/k approximation.

Solution: This questions is from Vijay Vazirani’s approximation algorithms
book. Let A be an optimal multiway cut in G. We can view A as the union
of k cuts as follows: The removal of A from G will create k£ connected compo-
nents, each having one terminal (since A is a minimum weight multiway cut, no
more than k& components will be created). Let A; be the cut separating the com-
ponent containing s;from the rest of the graph. Then A = U A;. Since each
edge of A is incident at two of these components, each edge will be in two of the
cuts A;. Hence,

Zw(AZ-) = 2w(A)

Clearly, A; is an isolating cut for s;. Since Cj; is a minimum weight isolating cut
for s;, w(C;) < w(A4;). Notice that this already gives a factor 2 algorithm, by

2

taking the union of all k£ cuts C;. Finally, since C' is obtained by discarding the
heaviest of the cuts Cj,

w(C’)g(l—l/k)Zw(C (1—1/k) Zw 2(1 — 1/k)w(A)

(b) Prove that this analysis is tight by providing an example graph where the approx-
imation bound is exactly achieved.

Solution: Consider for k = 4.

For each terminal s;, the minimum weight isolating cuts for s; is given by the edge
incident to s;. So, the cut C returned by the algorithm has weight (k —1)(2 — ¢).
On the other hand, the optimal multiway cut is given by the cycle edges, and has
weight k.

4. Consider variants on the metric TSP problem in which the object is to find a simple
path containing all the vertices of the graph. Three different problems arise, depending
on the number (0, 1, or 2) of endpoints of the path that are specified. If zero or one
endpoints are specified, obtain a 3/2 factor algorithm.

Hint. Consider modifying Christofides algorithm for metric T'SP.

Solution: We prove the 1 endpoint case, and the zero endpoints will follow by arbi-
trarily selecting an endpoint. Call the single endpoint v.

Construct a minimum spanning tree 1" of G. Determine the set of odd degree vertices,
call it S. There will be an even number of them, i.e. |S| = even. v may or may not be
in S. If v is in 9, take it out, along with another arbitrary vertex from S. If v is not
in S, don’t do anything.

Find the minimum matching M on S, and add it to 7', call the result G’. Notice that
in G/, all nodes have even degree, except for v and some other node. Thus we can find

an eulerian path and shortcut it to obtain a hamiltonian path. It remains to bound
the weight of G'.

Notice that M is a matching on at most n — 1 > |S| nodes, with this bound being
tight only when n is odd and v ¢ S, otherwise the bound is strict. Also notice that the
optimal hamiltonian path P* contains two edge-disjoint matchings on n — 1 and n — 2
nodes (just alternate edges along the path). Thus the weight of a minimum matching
on S is at most half the weight of P*, the optimal path.

Since P* is a spanning tree, we also have the weight of T is less than P*. Thus the
union of the path and matching have at most 3/2 the weight of P*.

. Recall the minimum vertex cover problem: given a graph G(V, F) find a subset S* C V'
with minimum cardinality such that every edge in E has at least one endpoint in S*.
Consider the following greedy algorithm. Find the highest degree vertex, add it to the
vertex cover S and remove it along with all incident edges. Repeat iteratively. Prove
that this algorithm has an unbounded approximation factor i.e. for any c there exists
an input graph G such that |S| > ¢ OPT.

Solution: Consider a bipartite graph with partition (A, B). Let |A| = n and partition
B into n disjoint sets { B;}} with |B;| = |n/i|. Then |B| = n+|n/2|+|n/3]+ - -+1 =
O(nlogn). For each vertex a € A place an edge to a vertex b € By such that each
vertex in By, has degree at least k. Repeat this for £ = 1,2,...,n and note that this
construction is possible since each |By| < n/k.

Clearly, OPT for this graph is just |A| = n. But the algorithm will (depending on how
degree ties are broken) remove all vertices in B. The approximation ratio is ALG/OPT
= O(nlog(n))/n = O(log(n)) Since the ratio depends on n it is unbounded.

. A dominating set of a graph is a subset of vertices such that every node in the graph is
either in the set or adjacent to a member of the set. The DOMINATING-SET problem
is as follows: given a graph G and a number k, determine if G' contains a dominating
set of size k or less.

(a) Show the DOMINATING-SET problem is NP-complete.

Solution: We will show that this problem is NP-Complete by reduction to VER-
TEX COVER. Assume we have a black box for solving dominating set instances
in polynomial time, and let G be a graph and £ a number. We will show that we
can tell if G contains a vertex cover of k or fewer nodes in polynomial time.

A problem is NP-complete if it is both NP and NP-hard. The DOMINATING
SET problem is clearly in NP, as given a set S, a graph GG, and a number k£ we can
test if S is a dominating set of G of size k or less by first checking if its cardinality
is less than or equal to k& and then checking if every node in G is either in S or
adjacent to a node in S. This process clearly takes polynomial time. We now
show the problem is NP-hard.

First, note that we can limit ourselves to the case where GG is connected, as if G
disconnected, we can break G into its connected components GG...G,. and compute
for each of these connected subgraphs the minimum k; such that there exists a

4

vertex cover in the subgraph. We can compute k; by simply performing a binary
search for it. Adding the obtained covers together gives the minimum vertex cover
of G. This is obviously a vertex cover, and it is minimum since any smaller vertex
cover must include fewer vertices from some connected subgraph of G G;. This
contradicts the minimality of the cover of G; we added to the cover of G. Thus
we can safely assume that GG is connected in our reduction.

Create a new graph G’ from G as follows: for every node u in (G, create a corre-
sponding node u in G’. Further, for every edge (u,v) in G, create a corresponding
node w,, in G’, and add the edges (u,wy,), (v, wyy), and (u,v). This graph has
m +n nodes, where n is the number of nodes in G and m is the number of edges.
We will show that for any number p, G has a vertex cover of p nodes if and only
if G’ has a dominating set of p nodes.

We begin with the forward direction. Let G have a vertex cover of p nodes, and
call it S. Then for every edge (u,v) in G, S contains either u or v, by definition.
Now, when we built G’, we took every node of G and created a copy of it in G'.
Let S’ C G’ be the set of all the nodes which correspond to the nodes of S in G.
This is a set of size p, and is a dominating set in G’: for every node corresponding
to a node u S’ contains either u or some neighbor of u (this neighbor exists since
G is connected by assumption), and for any node corresponding to an edge wy,
S’ contains either u or v by the construction of S— by the definition of G’ one
of these nodes neighbors w,,. Thus, if G has a vertex cover of size p G’ has a
dominating set of size p.

We now prove the backwards direction. Let G’ have a dominating set S” of p
nodes. We construct a cover of GG as follows: for every node of the form w,, in S’
(that is, for every node corresponding to an edge of), add the node u or v to
a set S. For every node z corresponding to a node of GG, add it to S. This gives
a set of size p in G, which is a vertex cover in G: for every edge (u,v) in G, Wy,
was created in G’. This node can only be dominated by u or v, and so S’ clearly
must contain either u, v, or w,,. Since we formed S by taking all of the nodes
of S" and converting the nodes of the form w,, to nodes of the form u, for every
edge in GG, S contains either u or v, and thus S is a vertex cover of size p of G.
So if G’ has a dominating set of size p, G has a vertex cover of size p.

With this, we see that G contains a vertex cover of k nodes if and only if G’
contains a dominating set of £ nodes. Thus, to tell if G has a vertex cover of k
nodes or less, we form G’ and apply our black box to it to see if it has a dominating
set of k or fewer nodes. Since G’ has m+n = O(n?) nodes and our black box runs
in polynomial time, doing this on G’ takes polynomial time. By our above proof,
this algorithm is guaranteed to return YES if and only if G actually contains a
vertex cover of k or fewer nodes. Thus, our reduction is complete: a polynomial
time algorithm for DOMINATING SET implies a polynomial time algorithm for
vertex cover, and thus DOMINATING SET is NP-complete.

(b) Obtain a In(n)-approximation to the DOMINATING-SET problem.

Solution: We will show that a simple greedy approach for this problem achieves
the desired approximation ratio. Our algorithm is as follows: while there are still
nodes in the graph, choose the node of highest degree, add it to our approximate
dominating set S, and remove it and all of its neighbors from G. This clearly
runs in polynomial time (we do at most n iterations of our loop, which checks
the degree once and deletes at most n nodes), and returns a valid dominating set:
a node is only deleted when it or a neighbor of it was added to .S, and so since
every node is eventually deleted, every node is either in S or adjacent to a node
in S. We will show that this gives a In(n)-approximation for our problem.

Assume that G has n nodes and the minimum dominating set of G has size k.
Call this sets S. Clearly, S must contain a vertex of degree at least n/k — 1, as if
it didn’t S could only dominate strictly fewer than k(n/k — 14 1) = n nodes: it
dominates k nodes by containing them and strictly less than k(n/k —1) =n —k
of them by neighboring them. Thus, when we add the vertex of highest degree
to S, we added a node with degree at least n/k — 1, and when we delete it an its
neighbors from G, we delete at least n/k nodes. So after adding this one node of
G to our set we get a new graph of n—n/k = n(1—1/k) nodes to cover. Repeating
this same argument on this new graph (utilizing the fact that at most k£ nodes
from S cover it and so one of the nodes has degree at least a 1/k-fraction of the
number of remaining nodes minus 1) and recursing gives us that after adding r
nodes to S, we will be left with a graph with at most n(1 — 1/k)" nodes. If we
chooose r = kin(n), we have a graph with n(1 — 1/k)¥"" < ne=") = n/n =1
nodes, and as the number of nodes must be an integer, we conclude that the
graph at this point is empty. So, as our algorithm terminates after adding at
most kin(n) = In(n)OPT nodes to S, we have that this algorithm is a In(n)
approximation to the DOMINATING SET problem, as desired.

7. An oriented incidence matrix B of a directed graph G(V, E) is a matrix with n = |V/|
rows and m = |F| columns with entry B, equal to 1 if edge e enters vertex v and —1
if it leaves vertex v. Let M = BBT.

(a) Prove that rank(M) = n —w where w is the number of connected components of

G.
(b) Show that for any i € {1,...,n},

det M“ = Z(det N)27
N

where M;; = M\{i"" row and column}, and N runs over all (n — 1) x (n — 1)
submatrices of B\{i*" row}. Note that each submatrix N corresponds to a choice

of n — 1 edges of G.

(c¢) Show that
+1 if edges form a tree
0 otherwise

6

detN:{

(d)

This implies that ¢(G) = det M;;, where t(G) is the number of spanning trees of
(. In this definition of a tree, we treat a directed edge as an undirected one.

Show that for the complete graph on n vertices K,

det Mu = n"_2.

Solution:

(a)

Consider that for a graph with k connected components, we can transform L into
a block diagonal matrix by relabeling the vertices of the graph such that each
block corresponds to a single connected component. It is therefore sufficient to
focus our analysis on a single connected component.

Next we claim Kernel(L) = Kernel(B” B) = Kernel(1). Suppose Bz = 0 then we
have BT Bz = 0 and Lxz = 0. Hence x in the kernel of B implies x is also in the
kernel of L.

Suppose Lz = 0 then we have 7Lz = 0 so 27 BT Bx = ||Bz||3 = 0 which only
holds if Bx = 0. Hence x in the kernel of L implies z is also in the kernel of B.

Lastly we have:

IBzll3=0 & > (zi—x;) =0
(i,5)eE
& Y(i,j) e E: ;=
< x € Kernel(1)

Given an r X ¢ matrix C' and an ¢ X r matrix D, the Cauchy-Binet formula
states that det(CD) =) s det(Cg)det(Dg) where the sum is over all possible
size r subsets S of {1,2,...,¢q}. Note that My = B;B] and apply the Cauchy-
Binet formula with r = n — 1,¢ = m,C = B; and D = B!. The identity
det(A) = det(AT) then yields the final result. A proof of the Cauchy-Binet
formula can be found at the following link. http://www.lacim.uqam.ca/~lauve/
courses/su2005-550/BS3. pdf

Given N consider the subgraph of GG induced by the choice of edges specified by
N. Assume that this subgraph contains a cycle. Furthermore, for now, assume
this cycle is directed. Index the vertices of the cycle with set I = {iy,1a,..., 0}
Define a n n — 1 vector ¢ with ones at indices of I and zeros elsewhere. Notice
that u = Nc = 0. This is true since any jth entry of u is the sum of +1 and —1
indicating a cycle edge entering vertex j and leaving it respectively. This implies
that the columns of N are linearly dependent and thus det(N) = 0.

For a cycle that is not directed note that we can set the entries in the vector ¢
from {—1,1} and reverse the sign of any column and in doing so flip the direction
of any edge in the cycle. Also, note that the removed row does not ruin the result
since the corresponding entry is never in u = Nec.

Now assume we have a tree. First use the following procedure to create a sequence
{i1,19,...,4i,_1}. Pick any leaf i; and remove it along with an incident edge e;,.

7

Then a leaf 75 with incident edge e;, , etc... . At each step we still have a tree but
with one less vertex. Continue the procedure until all edges of the tree have been
enumerated. Now construct a permutation matrix P to to rearrange the rows and
columns of N in the same order as they were removed i.e. send vertex i; to row
k and edge e;, to column k. Note that PN P is lower triangular since i), & e;, for

k < r (otherwise i, would not be a leaf at kth step). Furthermore all entries on
diagonal are +1 and so det(N) = det(PNP) = +£1.

Lastly, recall that a tree always has at least two leaves and so we can avoid picking
the vertex corresponding to the removed row during this procedure.

(d) Since det(M;;) is the number of spanning trees the total number of trees on n
vertices will be given by the complete graph K, since any possible set of edges
may be selected.

Consider the diagonal entry of M;;. A diagonal entry is the degree of vertex j
which is n — 1 for a complete graph. An off-diagonal entry is a dot product
between rows corresponding to distinct vertices. Since we have a complete graph,
we have an edge between them and so the dot product is —1-1 = —1.

We can then write M;; in form nl — ee” where e is a vector of all ones. The
determinant can be computed using the ShermanMorrison formula as follows.

el'le n—1

" det(nl) = (1 — -

nn—l — nn—Z

8. Given an associative expression, we would like to evaluate it in some order which is

optimal. Suppose we have as input n matrices Ay, As, ..., A, where for 1 <7 <n, A,
is a p;_1 X p; matrix. Parenthesize the product A; A, ... A, so as to minimize the total
cost. Assume that the cost of multiplying a (p;_1 X p;) matrix by a (p; X p;41) matrix
IS pi—1 X pi X piy1 flops.
Note that the algorithm does not perform the actual multiplications. It just deter-
mines the best order in which to perform the multiplication operations and returns the
corresponding cost. Come up with a dynamic programming formulation which takes
as input matrices Aq,..., A, and returns as output a single number describing the
optimal cost of multiplying the n matrices together. Your algorithm should require at
most O(n?) work, where n denotes the number of input matrices.

Solution: We first define our sub-problems. Given a sequence of matrices in a matrix-
multiply Ag-A;-...- A,_1, what feature of the optimal solution would we like to guess?
Can’t know the whole solution, since there are exponentially many different ways to
group the operations. We might consider, “what’s the last operation we do?” That is,
guess the outer-most / last multiplication. For example, we are faced with multiplying
(A; ... Ap_q) with (Ay-...- A;_;). Here we see that we are not dealing with only
a prefix or only a suffix anymore. We are dealing with a sub-string! The number of
possible choices for k is O(j —i + 1) = O(n).

We now define our recurrence,

DP(i,j) = min (DP(i, k) + DP(k,j) + [cost of product of Al : k] - A[k : j]]) .

When we are asked to solve DP(i,j) we need to know DP(i, k) and DP(k,j). Hence
this is a bottom-up solution.

Consider the work required for each sub-problem. It takes constant time for each
iteration of our minimization for-loop (i.e. when checking whether we have a min
candidate for each k € i+ 1,...,j — 1) since we have two free DP recursive (each
constant time) and we calculate the theoretical cost of multiplying A[i : k] with A[k : j],
which can be done in constant time. Hence O(n) cost across for one minimization, i.e.
O(n) time per sub-problem.

We also consider the topological ordering: we go by increasing sub-string size. Total
run-time: number of sub-problems x time per sub-problem is O(n?) - O(n) = O(n?).
Note here n is the number of matrices we multiply, which hopefully is much smaller
than the size of the matrices, hence allowing us to save time overall.

. Prove that if GG is connected, regular, and has an odd number of nodes, then G is
Eularian.

Solution: G Eularian <= all nodes in G have even degree. Since G is regular,
all nodes have same degree. Assume toward contradiction all nodes have odd-degree.
Since there are an odd # of nodes, this yields a contradiction to the handshake lemma.
Hence if G regular and has an odd # of nodes, all nodes must have even degree. Hence
G Eularian.

