
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 10, 4/29/2015. Scribed by Jan Dlabal, Fang-Chieh Chou, Yu-Wei Lin,

Yi-Hong Kuo.

10 Covariance Matrices and All-pairs Similarity

10.1 Some Quick Review

• Shuffle size is the size of all pairs emitted by all mappers.

• All to all communication will be kicked off by:

– groupByKey,

– join,

– reduceByKey, or

– repartition.

• All to one communication will be performed by:

– reduce, if done well, or

– broadcast.

10.2 Introduction

In statistics and data mining, sometimes we would like to calculate ATA for large m×n matrix A.

For example, the matrix A is the movie rating matrix where each rows is a user’s rating for different

movies. To give recommendation, we need to calculate “similarity” between all pairs of columns

in the matrix. Calculating all-pairs similatiry is essentially the same computation for ATA, which

entry (i, j) holds dot product (cTi cj) of column ci and cj of A. Therefore, the goal in this lecture is

to develop algorithm to compute ATA in a distributed way.

10.3 Assumptions for the matrix A

Assume A is an m× n matrix with the following properties:

• The matrix is tall and skinny (m� n). For example, m = 1012 with n = 104 or 106.

• Rows are sparse, with at most L non-zero entries in each row.

• The matrix is stored row by row and can be accessed by row index. For example, each row

is an entry of the RDD, which can fit into memory on a single machine.

• ATA is considerably much smaller than A (n× n, where n is small), and is a dense matrix.

1

http://stanford.edu/~rezab/dao

10.4 Naive Algorithm

Since ATA =
∑m

i=0 rir
T
i , where ri is i-th row of matrix A, the naive way to calculate ATA is to

implement the above calculation (slide p.8).

Algorithm 1 Naive Implementation

procedure NaiveMap(ri) . emit matrix rir
T
i , the outer product of ri by itself.

for all all pairs (aij , aik) in ri do

Emit ((j, k), aijaik)

end for

end procedure

procedure NaiveReduce(((i, j),〈v1, . . . , vR〉)) . sum up all the matrices

output cTi cj =
∑R

k=1 vk
end procedure

Here the mapper emits at most L2 numbers per row, so the shuffle size is bounded by O(mL2).

For the reducer, note that two columns might be identical and dense. For example, in the

Netflix case, a large number of users might have seen both Godfather and Godfather 2. This is

why in the worst case we’ll have to do O(m) work in each reduce step, where it needs to sum over

at most m numbers. When m is large, the naive algorithm may become intractable.

10.5 DIMSUM: Dimension Independent Matrix Square Using MapReduce

DIMSUM provides a tractable way to compute the all-pairs similarity efficiently in distributive

setting. The algorithm is shown below:

Algorithm 2 DIMSUM Implementation

procedure DimsumMap(ri)

for all all pairs (aij , aik) in ri do

With probability min(1, γ 1
||ci||||cj ||)

Emit ((j, k), aijaik)

end for

end procedure

procedure DimsumReduce(((i, j),〈v1, . . . , vR〉))
if 1

||ci||||cj || > 1 then

output bij = 1
||ci||||cj ||

∑R
k=1 vk

else

output bij = 1
γ

∑R
k=1 vk

end if

end procedure

2

DIMSUM Mapper is identical to the naive algorithm, except we emit with a probability instead

of total sum (slide p.10). This probabilistic emission scheme down-samples dense columns to reduce

the computational costs, with only minor impact on the accuracy of the similarity computed. DIM-

SUM Reducer will sum just as before, except it will have to scale the result given the probabilities

used by the mapper. The emitted probability is controlled by a tunable parameter γ. Different

values of γ gives different computational costs and errors, as we will show in the analysis below.

Here we are calculating cosine similarities instead of dot products. We also need to have the

norm of every column pre-computed before applying DIMSUM, but computing column norms is

much cheaper than computing dot products, so that’s not a big deal to use in the probabilities,

and the computation cost of norm won’t affect our analysis below.

10.5.1 Analysis for DIMSUM

Intuition : we down-sample column-pairs that are both dense (i.e. having high column norms).

In the naive algorithm, these dense column pairs will contribute a large amount of values to be

summed in the reducer. With smart down-sampling, we can avoid the maximum O(m) work per

reducer.

Shuffle size The proof for the bound of shuffle size is give in slide p.12-13, and we won’t repeat

it here. A few clarification is given below.

First, the proof assumes the elements of the input matrix has only 0 and 1. In this case, the slide

employs the notations #ci and #(ci, cj). For 0/1 matrices, the column norms are ||c|| =
√

#(c),

where #(c) is the number of non-zero entries in the column c. Similarly, we use #(ci, cj) to represent

the number of co-occurred non-zero entries between columns ci and cj , which simply equals to cTi cj
in 0/1 matrices.

Because every row has at most L non-zeros (we assume the matrices have sparse rows), we have

#(ci, cj) ≤ L#(ci); this allows us do the last step on slide p.13. Therefore DIMSUM gives a much

smaller bound that does not depend on m and is only linear in L, i.e. O(γLn).

For a non-0/1 matrix, the running-time bound gets worse (O(γLn/H2), where H is the smallest

nonzero entry in magnitude, slide p.15). For the 0/1 case, H = 1, but in the worst case scenario H

can be quite small. For example, imagine the case where the matrix contain mostly small numbers

ε’s, and one huge number. In this case H can be arbitrarily small, leading to a bad running time.

In the case of 0/1 matrices, since DIMSUMReducer produces a number between 0 and 1, clearly

the sum process only receives at most γ elements with the same key, (slide p.16).

3

	10 Covariance Matrices and All-pairs Similarity
	10.1 Some Quick Review
	10.2 Introduction
	10.3 Assumptions for the matrix A
	10.4 Naive Algorithm
	10.5 DIMSUM: Dimension Independent Matrix Square Using MapReduce
	10.5.1 Analysis for DIMSUM

