
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 13, 5/11/2015. Scribed by Zhiang Hu (Harvy), Benôıt Dancoisne, Tarek

Berro.

13.1 The perceptron algorithm

In this section, we will consider two linearly separable classes with margin γ, i.e. γ = minx∈S |w?x|
with ||w?||2 = 1 (that is γ is the minimum distance between a point and the hyperplane defined by

w?). We also assume that each data point x has been normalized such that ||x||2 = 1.

ɣ

w*

Figure 1: Linearly separable sets with margin γ

Recall the algorithm of the perceptron:

1

http://stanford.edu/~rezab/dao

Algorithm 1 Perceptron algorithm

1: procedure Perceptron

2: for each node xi ∈ Data do

3: if wT
t xi > 0 then

4: Predict positive label

5: else

6: Predict negative label

7: end if

8: if wrong label then

9: if true label is positive then

10: wt+1 = wt + xi
11: else

12: wt+1 = wt - xi
13: end if

14: end if

15: end for

16: end procedure

The number of mistakes made by this algorithm in a streaming context can be bounded as

follows:

Theorem 13.1 Under the assumption of linear separability with margin γ, the number of mistakes

made by the perceptron algorithm is at most 1/γ2

To prove the above statement, we first need to prove the two following claims:

Claim 13.2 After every mistake, we have wT
t+1w

? ≥ wT
t w

? + γ.

Proof: On a positive mistake, wT
t+1w

? = wT
t w

? + xTw? ≥ wT
t w

? + γ as xTw? > γ

On a negative mistake, wT
t+1w

? = wT
t w

? − xTw? ≥ wT
t w

? + γ as xTw? ≤ γ
Therefore wT

t+1w
? ≥ wT

t w
? + γ after any mistake.

Claim 13.3 ||wt+1||22 ≤ ||wt||22 + 1

Proof: On a positive mistake, ||wt+1||22 = ||wt||22 + 2wT
t x + ||x||22 ≤ ||wt||22 + 1 since wT

t x ≤ 0

and ||x||22 = 1.

On a negative mistake, ||wt+1||22 = ||wt||22 − 2wT
t x + ||x||22 ≤ ||wt||22 + 1 since wT

t x > 0 and

||x||22 = 1.

Therefore ||wt+1||22 ≤ ||wt||22 + 1 after any mistake.

We can now prove theorem 13.1

2

Proof of Theorem 13.1: Suppose that M mistakes have been made. Then as we start with

w0 = 0 Claim 13.2 yields

wT
Mw

? ≥Mγ

and Claim 13.3 yields

||wM ||22 ≤M

Putting those together we get

Mγ ≤ wT
Mw

? ≤
C.S.
||wM || ≤

√
M

and thus

M ≤ 1

γ2

13.2 Interface between theory and applications

Parallel computing uses different primitive from those usually encountered in sequential program-

ming such as for and while loops, if and switch statements. Those are used in different contexts:

Embarrassingly parallel problems For this kind of problem we only need the Map primitive

(in any distributed programming framework, not just Spark)

All to One and One to All communications The primitives used here are Reduce (the result

ends up on one machine, with an almost optimal cost equal to the cost on one machine

divided by the number of machines), Broadcast (whose communication cost is logb(k) for a

bandwidth b on k machines using a tree-like propagation) and AllReduce (the result ends up

on all machines, essentially a Reduce followed by a Broadcast)

All to All communication The primitive used here are Join, ReduceByKey, GroupByKey

(used when the reducing function is not associative and commutative), and Sort. (Again,

these primitives are found in any distributed programming framework, not just Spark)

13.3 The ADMM algorithm

Consider the following optimization problem:

minxF (x) =
∑
i

fi(x)

• If all the fi are continuous and convex, we have access to the subgradients and can use

gradient descent algorithms

• If the fi are strongly convex, we can use parallel stochastic gradient descent. In order to do

this we need to shuffle the data once, but as this implies sorting the data the shuffle size is of

order O(n) (which we would like to avoid)

3

• If the only assumption we make on the fi is convexity we can still use ADMM (Alternating

Direction Method of Multipliers). This algorithm is particularly useful in cases where

1. we have no access to subgradients

2. each function is convex

3. we want to avoid communication dependence on n

Note: ADMM is actually rarely used because of its poor convergence rate. It brings down the

error in objective by only 1/
√
k with each iteration k. Its advantage, however, is that it’s “apologies

free”.

In ADMM, each machine j deals with a subset Fj of functions fi in the original sum, and for

each iteration k, the local parameter xj is updated as follows:

xk+1
j = arg min

xj

(fj(xj) + ykTj · (xj − x̄k) +
p

2
||xj − x̄k||22)

yk+1
j = ykj + p(xk+1

j − x̄k+1)

Where p is the penalty parameter, x̄k = 1
m

∑
j x

k
j , m is the number of machines. ykj is an

auxiliary variable that indicates how close we are from the consensus.

Note that at each iteration, the only thing communicated through the network is x̄k+1 so that

xk+1
i can be computed locally. This is a one to all communication.

13.4 Note on how AllReduce works

We should also note that, to broadcast a vector we do not simply send a message from one machine

to all the m − 1 other machines directly, since the network bandwidth b of one machine could be

the bottleneck. Instead, we should first send the message to as many machines as possible (that

is b machines) and then send the message to O(b2) machines from the b + 1 machines and so on.

This takes O(logb(m)) steps and the total communication time is O(d · logb(m)) if x ∈ Rd, and d

is the dimension of x.

4

	13.1 The perceptron algorithm
	13.2 Interface between theory and applications
	13.3 The ADMM algorithm
	13.4 Note on how AllReduce works

