
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 3, Complexity Measures for Clusters, 4/6/2015.

Scribed by Jim Cai, Augustus Hong, Charles Zhang.

3 Complexity Analysis of Algorithms in a distributed setting

• Single Threaded Setting: Traditionally, we do complexity analysis of algorithms assuming

that we are working with single-thread process, in which case (once you account for memory

considerations):

computation time ∝ # operations

• Distributed Setting: In the distributed setting, we can no longer assume that runtime is

proportional to the number of operations. If a single thread’s runtime is S, in a distributed

setting, the best case scenario for the runtime of the same task on K machines is (S
K). This

happens when the problem is “embarrassingly parallel” with little communication overhead,

each machine solves its own local subproblem without needing to communicate much.

The main difference between single-thread and distributed computation is that you have to wait

for the last core/machine to finish, so consequently you want to spread out work as equally as

possible).

3.1 Example: Triangle Counting

Problem: Given a graph (V,E), count the number of triangles. Let m = |E| (the number of

edges) and n = |V | (the number of vertices). A triangle is a triple (u, v, w) such that (u, v), (v, w),

and (u,w) ∈ E.

Solution 1: Given an adjacency matrix A, calculate A2 + A and sum the off-diagonals. You

can do this as fast as you can multiply 2 matrices (i.e., O(n3) in the naive case and, currently,

O(n2.37..) in the non-naive case).

This solution works for arbitrary graphs and is good when the graph is dense. Most graphs,

however, are sparse (i.e. m is O(n)) and we can do better than this solution in these cases. Ideally,

we would like to find an algorithm with a complexity that is a function of m (nicely, cheap w.r.t

m). In the next section, we discuss Node Iterator, which is one such algorithm.

1

3.1.1 Node Iterator Algorithm

Here is a simple solution based on iterating through each node: given a graph G = (V,E), iterate

through each node v ∈ V and construct Γ(v), the neighborhood of v. Then for each pair of nodes,

u,w ∈ Γ(v) check if (u,w) ∈ E. If so, then we have found a triangle. Note that this will count each

triangle 6 times, twice for each node.

Algorithm 1 NodeIterator(V,E)

T ← 0

for v ∈ V do

for u ∈ Γ(v) do

for w ∈ Γ(v) do

if (u,w) ∈ E then

T ← T+1/2

return T/3

Let ≻ be a total order on all vertices such that u ≻ v if and only if deg(u) > deg(v), with ties

broken arbitrarily but consistently. How ties are broken is not particularly important as long as

the ordering remains consistent between runs. We can use this ordering to reduce the amount of

over-counting and therefore work done by NodeIterator.

Define the modified neighborhood of v, Γ∗(v), as {u ∈ Γ(v) | u ≻ v}. Roughly speaking, this is

the set of neighbors of v with higher degree than v, and we can use these modified neighborhoods

when counting triangles so that only the lowest degree node in each triangle ‘counts’ the triangle.

Then, instead of counting each triangle 6 times we only count each triangle twice.

Algorithm 2 NodeIterator++(V,E)

T ← 0

for v ∈ V do

for u ∈ Γ∗(v) do

for w ∈ Γ∗(v) do

if (u,w)∈ E then

T ← T+1
2

return T

If we fix a arbitrary number t > 0 , the complexity of this algorithm is upper bounded by

∑

v∈V

(

deg(v)

2

)

=
∑

v∈V,deg(v)≥t

(

deg(v)

2

)

+
∑

v∈V,deg(v)<t

(

deg(v)

2

)

.

The expansion seperates the summation for high degree nodes (deg(v) ≥ t) and low degree nodes.

By the handshake lemma, we know that the number of high degree nodes is at most 2m
t (there are

m edges each contributing to 2 degrees). Therefore, the first part of the sum is at most (2mt)3 (#

high degree nodes choose 3)

2

For the low degree nodes (i.e. nodes v such that deg(v) < t) we have that

∑

v∈V,deg(v)<t

(

deg(v)

2

)

≤
∑

v∈V,deg(v)<t

deg(v)2 ≤ t

⎛

⎝

∑

v∈V,deg(v)≤t

deg(v)

⎞

⎠ ≤ 2mt.

This implies that the total work done by NodeIterator++ is upper bounded by (2mt)3 + 2mt. We

can choose t =
√
m to minimize this, giving 4m3/2+2m3/2 = O(m3/2) runtime for NodeIterator++.

For sparse matrices, O(m
3

2) < O(n2.373...), so we have achieved our goal of improving the matrix

multiplication algorithm by exploiting graph sparsity.

A reasonable question to ask is whether or not we lost some rigor or sharpness by changing the

algorithm in this way. We can construct an example such that there is a clique K√
n and n −

√
n

nodes that are connected in a line (see figure 3.1.1). In this example, the number of triangles is

Θ(
(

√
n
3

)

) = Θ(n
3

2) and m = Θ(
(

√
n
2

)

) = O(n). Thus, our algorithm matches up with this bound.

One important concept that this example illustrates is that there is a noticeable difference in com-

plexity between listing and counting triangles. In order to list the triangles in a clique, there is

O(n3) work as there are just that many triangles. However, if we were just counting, we could do

it faster by just calculating A2 +A, which is just O(n2.37) amount of work.

Figure 1: An example of a lollipop graph

3.2 Cluster/Distributed Complexity Measures

In any distributed setting (and, especially, in a MapReduce framework), there are three things that

we analyze to determine complexity:

• Number of iterations (you want as few maps, join-bys, etc. as possible)

• Shuffle size after combining (number of tuples output by mapper machine)

• Time and memory for reducers to finish

3.3 Distributed Node Iterator

In an industrial setting, the edges arrive and leave one at a time (think social graphs), then the

input will be given to us as a bunch of edges, e.g., the input will be {(u1, v1), (u2, v2), . . . , (um, vm)}

3

Then, to run node iterator in a distributed setting, we can decompose the algorithm into the

following 3 MapReduce jobs:

1. Compute Degrees (combiner is good)

2. Construct Modified Neighborhoods and run node iterator (can’t use combiner)

3. Check triangle closure by joining with edges (combiner use depends on join implementation)

3.3.1 (1. Compute Degrees)

We can analyze the work done in this step. In the mapper:

for each (u, v), emit (u, ”1”), (v, ”1”).

and then, in the reducer, we sum up the number of records each key has (the key is determined by

the first element of the tuple, i.e. u). Since the summation is associative and commutative, we can

use a combiner without any issue and the shuffle size is 2m. At the machine-level, we can dish out

the edges locally and there will be perfect scaling.

3.3.2 (2. Node Iterator)

We usually assume n fits into memory but m cannot, so the results from part 1 (an array with the

degrees counts that is of size n) can be broadcast to and stored by each machine.

Then, we have map((u, v)):

if u≺v: emit(u,v)

else emit(v,u)

and we have reduce(v, Γ∗(v))

for (u,w) ∈ Γ∗(v): emit((u,w), v)

We need to emit all the candidate edges because there’s no way to check against the real edges

since we cannot keep them in local memory. Shuffle size is O(m) because we are emitting each

edge. Memory constraints are fine because we are only keeping degree counts.

For each reducer we are interested in the upper bound of edges it could receive.

For low degree nodes, Γ∗(v) ≤
√
m

For high degree nodes, Γ∗(v) ≤ 2m
t = 2

√
m. This is because we are using Γ∗ so the only neigh-

bors of high degree nodes are other high degree nodes

Some assorted notes:

4

• If you tried to run this without modified neighborhoods (i.e., the original node iterator algo-

rithm), you would be in O(n2) complexity and this suddenly becomes an intractable problem.

• There is a paper about this on the DAO website (”the curse of the last reducer”).

• This algorithm is not perfect either as the work may not be evenly distributed.

• Combiners are run before any network activity on the mapper node on the mapper output.

Utilize them to reduce reducer operations and shuffle size.

5

	3 Complexity Analysis of Algorithms in a distributed setting
	3.1 Example: Triangle Counting
	3.1.1 Node Iterator Algorithm

	3.2 Cluster/Distributed Complexity Measures
	3.3 Distributed Node Iterator
	3.3.1 (1. Compute Degrees)
	3.3.2 (2. Node Iterator)

