
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 8, 4/22/2015. Scribed by Orren Karniol-Tambour, Hao Yi Ong, Swa-

roop Ramaswamy, and William Song.

8.1 Introduction

This lecture covers the basics of GraphX, Spark’s graph-processing API, which extends the popular

Pregel data flow paradigm to Spark. It also features an introduction to matrix computations using

Spark.

8.2 How does Pregel work?

Pregel (a portmanteu of the words Parallel, Graph, and Google) is a data flow paradigm and system

for large-scale graph processing created at Google to solve problems that are hard or expensive to

solve using only the MapReduce framework. While the system remains proprietary at Google, the

computational paradigm was adopted by many graph-processing systems, and many popular graph

algorithms have been converted to the Pregel framework.

Pregel is essentially a message-passing interface constrained to the edges of a graph. The idea

is to ”think like a vertex” - algorithms within the Pregel framework are algorithms in which the

computation of state for a given node depends only on the states of its neighbours. Figure 1 shows

the Pregel paradigm’s data flow model. A Pregel computation takes a graph and a corresponding

set of vertex states as its inputs. At each iteration, referred to as a superstep, each vertex can send

a message to its neighbors, process messages it received in a previous superstep, and update its

state. Thus, each superstep consists of a round of messages being passed between neighbors and an

update of the global vertex state. A few examples of Pregel implementations of graph algorithms

will help clarify how the paradigm works.

Figure 1: The Pregel paradigm’s data flow model.

1

http://stanford.edu/~rezab/dao

8.3 Examples of Graph Algorithm Implementations using Pregel

8.3.1 PageRank

PageRank is very intuitively implemented in the Pregel paradigm. At each superstep, each vertex

updates its state with a weighted sum of PageRanks from all of its neighbors, processing the set of

previous incoming messages. It then sends out an equal share of its new PageRank to each of its

neighbors, sending out a set of outgoing messages. This continues until convergence.

Algorithm 1 PageRank

input: G : Graph[V,E])

while err ≥ ε do
for vertex i do

R[i] = 0.15 + 0.85
∑

j∈Nin(i)

M [j]

M [i] = R[i]/|Nout|
Send M [i] to all Nout(i)

end for

err = |R− previousR|
end while

8.3.2 Connected Components

To compute connected components in a graph using the Pregel paradigm, we can imagine letting

each vertex ‘infect’ its neighbors. Each vertex is initialized with a unique ID, and at each iteration,

each vertex sends its ID to its neighbors. Each vertex then overwrites its own ID with the max

(or alternatively, min) ID it receives from its neighbors at each superstep. This continues until

convergence. For computing the weakly connected components of an undirected graph, we assume

Nin = Nout.

One caveat regarding the algorithm given above is that it may take O(n) iterations to converge

for some types of graphs. For example, consider the lollipop graph shown in Figure 2. If you start

at one of the end nodes on the right, then at each iteration, you will only infect one node. For

graphs which have n in the order of millions or billions, this may be unacceptable. However, in

most social networks and web graphs, this does not really happen, so this is not a problem for most

practical applications.

Figure 2: An example of a lollipop graph.

2

Algorithm 2 Strongly Connected Components

input: G : Graph[V,E])

stale = 0

while stale 6= |V | do
stale = 0

for vertex i do

if ID[i] = max
j∈Nin(i)

ID[j] then

stale = stale+ 1

else

ID[i] = max
j∈Nout(i)

ID[j]

Send ID[i] to all Nout

end if

end for

end while

In many real-world graphs, few nodes have very high degree neighborhoods - for example, a

node representing the followers of Katy Perry on Twitter will have tens of millions of neighbors.

Critically, the Pregel framework does not require that we able to fit the incoming messages from

the neighborhood of a vertex in a single machine. The Pregel paradigm allows us to distribute the

computation for high degree nodes, as we’ll see in GraphX’s notion of ‘vertex cutting’.

8.4 GraphX

GraphX is Spark’s graph processing and computation API, which implements the Pregel paradigm

within Spark using RDDs. To implement Pregel, separate RDDs are created to represent the graph,

the global vertex state, and the messages from each vertex to its neighbors. Note that because RDDs

are immutable objects in Spark, new RDDs representing the vertex state and outgoing messages

are created at each superstep of the computation. A groupByKey operation is used to perform each

superstep in the computation. We could use a FlatMap and a reduceByKey but this can be very

expensive when only 1-2 vertices send messages in a superstep. Since Pregel algorithms perform

supersteps until convergence, later supersteps typically involve updates on only a few vertices. If

we used a FlatMap and a reduceByKey, we would have to shuffle the whole data just to update

a few vertices. This is very inefficient when we consider algorithms where very few vertices send

messages at each superstep, so we use groupByKey instead.

In GraphX, every vertex has an ID and a property associated with it, which can take the form of

any tuple. Similarly, each edge is associated with an ID for the source vertex, ID of the destination

vertex and a property.

3

8.4.1 Map-Reduce Triplets

A triplet contains a source vertex, a destination vertex and the edge connecting these two. As it

turns out, computing triplets, or joining edges and vertices, is a basic computation used in many

useful graph algorithms. However, if done naively, computing triplets would require two joins on

the vertex RDD and the edge RDD, which is very expensive. GraphX implements an optimized

triplets computation and provides us with a triplets operator for joining vertices and edges in its

API. The Triplets operator is composed of two inputs, a map and a reduce function. The Map

function takes as its input a triplet and returns an object. The Reduce function performs a reduce

operation on these objects.

8.4.2 Triplets Example : Oldest Follower

In the oldest follower problem, we try to to find the oldest follower for each node in a directed

graph. We can compute this using MapReduce triplets as follows to accomplish this

val oldestFollowerAge = graph.mrTriplets(

e=> (e.dst.id, e.src.age),// Map

(a,b)=> max(a, b) // Reduce

).vertices

8.4.3 Other Operations

Other operations natively available in the GraphX API include PageRank, strongly connected

components, triangle counting etc. GraphX also provides a Mask operator, which given a graph,

returns a sub-graph with specified vertices masked. For a complete list of GraphX operations, refer

to the GraphX programming guide.

8.4.4 Optimization

Graphs derived from natural phenomena (e.g., social networks) tend to follow skewed power-law

distributions. In general, partitioning algorithms based on edge cutting typically fare poorly on such

graphs due to high-degree vertices present in such graphs. In comparison, vertex cut partitioning

schemes have been observed to perform well on many large natural graphs [4]. Thus, to distribute

computation workload evenly GraphX partitions the graph with vertex-cut. This is different from,

say, Giraph, which uses edge-cut partitioning.

In brief, vertex-cut splits high-degree vertices across partitions and evenly assigns edges to a

machine in a way that minimizes the number of times each vertex is cut. As explained in lecture,

GraphX represents a graph using three RDDs: an edge collection and two vertex collections. Being

separate constructs, these RDDs do not need to be stored on the same machine. Each vertex

partition contains a routing table RDD and a datatable RDD. The routing table is a logical map

from a vertex id to the set of edge partitions that contains adjacent edges. The datatable RDD

simply stores vertex data in the form of vertex (id, data) pairs. The edge RDD stores the adjacency

structure and edge data. Each edge is represented as a tuple consisting of the source vertex id,

4

http://spark.apache.org/docs/latest/graphx-programming-guide.html

destination vertex id, and user-defined data as well as a virtual partition identifier (pid). Note that

the edge table contains only the vertex ids and not the vertex data. The edge table is partitioned by

the pid. This technique incurs some overhead due to the joins and aggregation needed to coordinate

vertex properties across partitions containing adjacent edges.

Figure 3: An illustration of Vertex Cut.

During graph computations, we often need to assemble an edge with the data associated on

both vertices. GraphX uses a 3-way relational join to bring together the source vertex data, edge

data, and target vertex data:

VertexDataTable v

JOIN VertexMap vm ON (v.id=vm.id)

RIGHT OUTER JOIN EdgeTable e

ON (e.pid=vm.pid AND (e.src=v.id OR e.dst=v.id))

WITH PARTITIONER edgeTable.partitioner ON pid

The joins to obtain triplets are fairly straightforward and use a partitioner. As the edge table

is often much larger than the vertex data table, the partitioner is used to ensure the join site would

be local to the edge table. This allows GraphX to shuffle only the vertex data and avoid moving

any of the edge data. To minimize communication, GraphX co-partitions the two tables so the

first join can be done locally. The resulting table from the 3-way join presents an edge-centric view

of the graph, with each tuple containing the edge data, source vertex data, and the target vertex

data. More information can be found in [5].

8.5 Computations on Matrices with Spark

8.5.1 Distributed Matrices

In Spark, matrices are typically stored broken up for storage in three different ways:

• By entries (CoordinateMatrix): stored as a list of (i, j, value) tuples

• By rows (RowMatrix): each row is stored separately (e.g. Pagerank)

5

• By blocks (BlockMatrix): by storing submatrices of a matrix as dense matrices, block matrices

can take advantage of low-level linear algebra library for operations like multiplications.

8.5.2 RowMatrix × LocalMatrix

When multiplying a RowMatrix with a small local matrix, we broadcast the entire small matrix

to each machine that contains different parts of the RowMatrix and perform multiplications on

each machine. Currently, Spark uses BLAS level 1 optimization, which optimizes for vector-vector

multiplications during the multiplication.

rows are distributed




rT1
rT2
...

rTn


 l1 l2 . . . lm



8.5.3 CoordinateMatrix × CoordinateMatrix

CoordinateMatrix is used to represent sparse matrices, and is stored as a list of (row, column,

value) entries. To perform matrix multiplication of two Coordinate Matrix elements C = AB, one

can summarize the procedure as follows:

Algorithm 3 CoordinateMatrix Multiplication

input: A : {(i, j, Aij)|Aij 6= 0}, B : {(i, j, Bij)|Bij 6= 0}
J ← Join A,B on a.j and b.i for a ∈ A, b ∈ B
M ← For each j ∈ J , map it to (key, value) where key=(a.i, b.j) and value=a.val × b.val
C ← Reduce M with “+”

Unfortunately, Spark does not have CoordinateMatrix multiplication implemented in the cur-

rent library. One possible implementation with Scala, when assuming the matrices are stored as

RDD[MatrixEntry(i, j, value)] is shown below

import org.apache.spark.mllib.linalg.distributed._

val n = 10 // one dimension of the matrix

val range = sc.parallelize({1 to n * n})

// Generate two random sparse matrices of size nxn

val A = range.sample(false, 0.2).map(i => MatrixEntry(i / n, i % n, i))

val B = range.sample(false, 0.2).map(i => MatrixEntry(i / n, i % n, i))

// Perform multiplication

val C = A.map(e => (e.j, e)).join(B.map(e => (e.i, e)))

.map(p => ((p._2._1.i, p._2._2.j), p._2._1.value * p._2._2.value))

.reduceByKey(_ + _).map(p => MatrixEntry(p._1._1, p._1._2, p._2))

6

Effectively, for each 1 ≤ i ≤ n, we first join all entries of matrix A on the i-th column with the

entries of matrix B on the i-th row, which would create a Cartesian product of two sets of entries

for each i. The resulting set contains all possible pairs of entries that would’ve been multiplied

together during a normal matrix multiplication, and each pair of entries is keyed by their shared

dimension during the dot product operation. We then remap each element in this set by its position

in the result matrix and change its value to the product of the two entries and then reduce each

result position with the addition operator. This effectively simulates the dot product operation.

Finally, we remap the result to the desired format.

8.5.4 BlockMatrix × BlockMatrix

In some cases, we’d like to multiply two dense matrices for which the rows and columns may

themselves be too large to fit in memory on a single machine. By partitioning our matrices into

blocks that do fit on a single machine - encoding each one as a BlockMatrix - and performing

multiplication on their partitions, we can manage to perform matrix computation on the larger

matrices. Using BlockMatrix, we also have the ability to push down the smaller block matrix

multiplications to the CPU/GPU directly using Basic Linear Algebra Subprograms (BLAS) routines

- as mentioned above, Spark currently uses BLAS level 1 for matrix multiplication. To perform

block matrix multiplication, we partition both matrices appropriately so their blocks are equally

sized within each matrix, aligned in size across matrices, and so that a single block from each matrix

fits together on a single machine. Following partitioning, block multiplication proceeds similarly to

coordinate multiplication. Each matrix is flatmapped to produce a list of blocks for multiplication

- each block in the first matrix A is effectively copied as many times as the number of columns

in the second matrix B, and each block in B is effectively copied as many times as the number of

rows in A. Following the flatmap, a cogroup is used to send pairs of complementary blocks that will

need to be multiplied to an individual machine, where the multiplication is pushed down to the

CPU/GPU level using BLAS. Finally, results of the individual block multiplications corresponding

to each block entry in the resulting matrix are sent to the same machine with ReduceByKey and

summed up. A simplified version of the Spark code for block matrix multiplication is presented

below:

def multiply(other: BlockMatrix): BlockMatrix = {

// Get partitions

val resultPartitioner = GridPartitioner(numRowBlocks, other.numColBlocks,

math.max(blocks.partitions.length, other.blocks.partitions.length))

// Each block of A must be multiplied with the corresponding blocks

// in each column of B.

val flatA = blocks.flatMap {

case ((blockRowIndex, blockColIndex), block) =>

Iterator.tabulate(other.numColBlocks)

7

(j => ((blockRowIndex, j, blockColIndex), block))

}

// Each block of B must be multiplied with the corresponding blocks

// in each row of A.

val flatB = other.blocks.flatMap {

case ((blockRowIndex, blockColIndex), block) =>

Iterator.tabulate(numRowBlocks)

(i => ((i, blockColIndex, blockRowIndex), block))

}

// Cogroup and multiply block pairs

val newBlocks: RDD[MatrixBlock] = flatA.cogroup(flatB, resultPartitioner)

.flatMap { case ((blockRowIndex, blockColIndex, _), (a, b)) =>

if (a.nonEmpty && b.nonEmpty) {

val C = b.head match {

case dense: DenseMatrix => a.head.multiply(dense) // Uses BLAS 1

case sparse: SparseMatrix => a.head.multiply(sparse.toDense)

}

Iterator(((blockRowIndex, blockColIndex), C.toBreeze))

} else {

Iterator()

}

}

// Sum up matrices for each block entry of C

.reduceByKey(resultPartitioner, (a, b) => a + b)

.mapValues(Matrices.fromBreeze)

}

References

[1] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[2] G. Malewicz and M. Austern and A. Bik and J. Dehnert and I. Horn and N. Leiser and

G. Czajkowski. Pregel: a System for Large-Scale Graph Processing. Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, 2010.

[3] J. Gonzalez and R. Xin and A. Dave and D. Crankshaw and M. Franklin and I. Stoica.

Graphx: Graph Processing in a Distributed Dataflow Framework. Proceedings of the 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[4] J. E. Gonzalez et al. Powergraph: Distributed graph-parallel computation on natural graphs..

OSDI’12, USENIX Association, pp. 1730.

8

[5] R. S. Xin et al. GraphX: A resilient distributed graph system on Spark. Proceedings of the

First International Workshop on Graph Data Management Experience and Systems (GRADES

2013), June 23, 2013, New York, New York, USA.

9

	8.1 Introduction
	8.2 How does Pregel work?
	8.3 Examples of Graph Algorithm Implementations using Pregel
	8.3.1 PageRank
	8.3.2 Connected Components

	8.4 GraphX
	8.4.1 Map-Reduce Triplets
	8.4.2 Triplets Example : Oldest Follower
	8.4.3 Other Operations
	8.4.4 Optimization

	8.5 Computations on Matrices with Spark
	8.5.1 Distributed Matrices
	8.5.2 RowMatrix LocalMatrix
	8.5.3 CoordinateMatrix CoordinateMatrix
	8.5.4 BlockMatrix BlockMatrix

