
All-Pairs Shortest Paths in Spark

Charles Y. Zheng and Jingshu Wang
Department of Statistics

Stanford University
Stanford, CA 94305

{snarles, jinshuw}@stanford.edu

Arzav Jain
Department of Computer Science

Stanford University
Stanford, CA 94305

arzavj@cs.stanford.edu

Abstract

We propose an algorithm for the All-Pairs-Shortest-Paths (APSP) problem suit-
able for implementation in Spark, and analyze its performance. We begin by
considering distributed Floyd-Warshall, as proposed by Kumar and Singh (1991).
Distributed Floyd-Warshall has asymptotically optimal scaling and can be imple-
mented in Spark by using BlockMatrix to represent the APSP distance matrix.
However, we observe that its implementation in Spark suffers from poor perfor-
mance for medium-sized problems due the large number of global updates of the
APSP distance matrix required for the algorithm. Since the lineage of the algo-
rithm grows with the number of vertices n, it becomes necessary to use a pro-
portional number of checkpoints which further impacts the efficiency of the algo-
rithm. This motivates the consideration of an algorithm for APSP which requires
fewer global update steps. We adapt an approach by Solomonik et al. (2013)
based on the “divide and conquer” algorithm for APSP. Our algorithm reduces
the number of global updates by a factor of b, where the block size b determines
the amount of computation done in each iteration. By adjusting the block size
b we obtain a favorable tradeoff between checkpointing costs and computation
cost per iteration, resulting in far improved performance compared to Distributed
Floyd-Warshall.

1 Summary

For the convenience of the reader we present an overview of our approach and our results. The rest
of the paper gives a detailed explanation of the results in this section.

1.1 Problem Specification

Let G = (V,E) be a graph with n vertices. Assume the input is given in the form of the adjacency
matrix A of the graph stored as a BlockMatrix with equally sized square blocks. Specifically
define the adjacency matrix A as a square matrix with dimension n = |V |, and entries

Aij =


wi,j if (i→ j) ∈ E
0 if i = j

∞ if (i→ j) /∈ E

Let b be the size of the block, and let n = b` so that `2 is the number of blocks. Write

A =


A11 A12 · · · A1`

A21 A22 · · · A2`

...
...

.
A`1 A`2 · · · A``


1

so that Aij is the (i, j)th block in the BlockMatrix.

The output is given by the APSP distance matrix S, where

Sij =


weight of shortest path if there exists a path i→ j

0 if i = j

∞ if there is no path i→ j

Let S be stored as a BlockMatrix with the same dimensions and block sizes as A, so that

S =


S11 S12 · · · S1`

S21 S22 · · · S2`

...
...

. . .
...

S`1 S`2 · · · S``


1.2 Scaling

We consider scaling n possibly larger than the memory per worker. We do not assume a sparse graph
G, so the number of edges can scale as E ∼ n2.

Let p be the number of workers. We assume the memory of each worker is fixed. Therefore b must
be constant since we assume each block must fit in memory, and p must increase as n increases.

Each worker holds n√
p ×

n√
p elements of S. Since S is broken up into b × b blocks, each worker

holds n
b
√
p ×

n
b
√
p blocks.

Note that our analysis is split into two components: a latency-free analysis and a latency-added
analysis. The latency-free analysis is non-asymptotic, while the latency-added analysis is asymptotic
in p.

1.3 Notation

Given an n×m matrix A and an n×m matrix B, define the entrywise minimum C = min(A,B)
by

Cij = min(Aij , Bij)

Meanwhile, given an n×k matrixA and a k×mmatrixB, define the min-plus product C = A⊗B
by

Cij =
k

min
l=1

Ail +Blj

for i = 1, . . . , n and j = 1, . . . ,m.

Define APSP(A) as the all-pairs-shortest-distance matrix for adjacency matrix A. For example,
APSP(A) is obtained by running the Floyd-Warshall algorithm on A.

1.4 Algorithm

The algorithm consists of an outer loop with ` = n/b iterations. Each iteration culminates in
the global update of the BlockMatrix S containing the intermediate values of the APSP distance
matrix. Each outer loop iteration involves the execution of three distributed subroutines in sequence,
called the A-step, the B-step and C-step. In addition, after every q iterations, the BlockMatrix S
is checkpointed.

We first give an shorthand description of the algorithm without explicitly specifying the Spark op-
erations used in each step or what data needs to be communicated at each step. In the analysis, we
expand each step to describe the specific Spark operations needed, including the broadcasts, joins,
etc. needed to transfer the necessary data across workers. Note that S(0), S(1), . . . , S(`) refer to the
sequence of BlockMatrix objects storing the results of each iteration.

2

Algorithm 1 Distributed Block APSP (shorthand)

function BLOCKAPSP(Adjacency matrix A given as a BlockMatrix with ` row blocks and `
column blocks)

S(0) ← A
for k = 1, . . . , ` do

[A-step]
Skk(k) ← APSP(Skk(k−1))
[B-step]
for i = 1, . . . , `, j = 1, . . . , ` do in parallel

if i = k and j 6= k then
Skj(k) ← min(Skj(k−1), Skk(k) ⊗ Skj(k−1))

end if
if i 6= k and j = k then

Sik(k) ← min(Sik(k−1), Sik(k−1) ⊗ Skk(k))
end if

end for
[C-step]
for i = 1, . . . , `, j = 1, . . . , ` do in parallel

if i 6= k and j 6= k then
Sij(k) ← min(Sij(k−1), Sik(k) ⊗ Skj(k))

end if
end for
[D-step]
if k ≡ 0 mod q then

Checkpoint S(k)

end if
end for
Return S = S(`), the APSP matrix in BlockMatrix form

end function

Correctness is proved in section 4.

1.5 Optimality

The single-core cost of Floyd-Warshall, the best known single-core algorithm for APSP, is O(n3).
A perfectly distributed form of Floyd-Warshall therefore has a total runtime of O(n3/p), in the
asymptotic regime n→∞ and p = O(n). Our algorithm achieves the same asymptotic runtime of

O

(
n3

p
+
n2b
√
p

+ n2 + nb2 + nb log(p)

)
for details see section 3.

One can also consider the communication cost scaling in terms of the amount of data transferred
over the network. The paper by Solomonik et al. (2013) derived a theoretical lower bound on the
communication cost of APSP as Ω(n2

p2/3
) words. In comparison, our algorithm communicates a

total of O(n2
√
p + n

b

√
p) words, which is worse by a power of p. Note however that distributed

Floyd-Warshall has the same O(n2
√
p) bandwidth.

1.6 Communication Cost and Type

We analyze the bandwidth (total words sent) and the type of communication in each step of the
algorithm. The A-step involves a one-to-one communication of a matrix of size b× b from a worker
to the driver, involving a bandwidth of O(b2) words. The B-step involves a one-to-all broadcast of
a matrix of size b × b from the driver to p workers, hence a bandwidth of O(b2p) words. The C-
step involves an all-to-all communication (a map-side join) where each worker receives two n√

p × b
matrices, and therefore entails a bandwidth of O(nb

√
p). Therefore the per-iteration bandwidth is

3

O(pb2+nb
√
p). There are n/b iterations, so the total bandwidth for the algorithm isO(n2

√
p+pnb).

See section 3 for the derivation of the bandwidth per step.

1.7 Summary of Results

We implement the non-recursive block APSP in Apache Spark. Running the algorithm in the local
configuration with 4 cores, we see a U-shaped (initially decreasing, then increasing) dependence
relationship between block size and wall-clock runtime as predicted by our analysis. In medium-
sized problems, choosing the correct block size can improve the runtime by a factor of 50 or more.
For example, for a matrix n = 1000, we have an average wall-clock runtime of 728.4s given a
suboptimal block size b = 2, compared to a runtime of 16.6s given the optimal block size b = 250.
For details see Section 5.

2 Background

The fastest known single-core algorithm for APSP is the Floyd-Warshall (FW) algorithm which
takes O(n3) operations. The kth iteration can be expressed in matrix notation as

S(k) ← min(S(k−1), S
(k−1)
·,k ⊗ S(k−1)

k,·)

Hence FW can be parallelized given a parallel algorithm for min-plus multiplication, as Kumar and
Singh proposed in 1991 using Cannon’s algorithm. However, since FW takes n sequential updates,
its speed is limited for GPU computing and distributed computing. Buduc et al. (2010) proposed
using a recursive formulation of APSP, known as the Divide-and-Conquer algorithm, to formulate
a block-based recursive algorithm for APSP. Solomonik et al. (2013) extended Buduc’s recursive
approach to the distributed setting and analyzed the communication cost.

Both approaches by Buduc and Solomonik involve recursive algorithms which are difficult to imple-
ment in Spark. We therefore propose a non-recursive algorithm for APSP which can be considered
a block-based generalization of the original Floyd-Warshall algorithm.

3 Complexity Analysis

For each step of the algorithm (A, B, C) we give the computational cost (computation done on
each worker), the bandwidth (number of words sent) and the total wall-clock runtime of the entire
step. Here we define wall-clock runtime as the time between the start of the algorithm and its
termination as measured by an absolute clock. As such, the runtime incorporates both the time spent
communicating and the time spent computing. To model communication times, we first consider a
latency-free analysis which assumes a zero-latency network. Finally we give an analysis adjusting
for latency.

All of our analysis is non-asymptotic. As such, we make the following assumptions on the compu-
tational costs and runtimes of atomic operations:

1. The time it takes to run Floyd-Warshall on a local matrix of size b× b is given by κF b3

2. The time it takes to locally perform min-plus multiplication on matrices of size a × b and
b× c be given by κMabc. The time to update C ← min(C,A⊗B) is the same as the time
to compute A⊗B since C can be modified in-place during the min-plus product.

3. Separate the cost of communication and computation, so that sending messages and receiv-
ing messages is not included in the computational cost.

4. Time taken to send one message consisting of m words from one machine (whether a
worker or driver) to another machine is κTm, where κT describes the rate of transmission

5. Time taken to broadcast m words from the driver to all workers is given by

log(p)κTm

due to the usage of bittorrent broadcast.
6. Costs of checkpointing are considered in the latency-added analysis

4

Figure 1: The Block APSP-algorithm in Spark. A-step. Diagonal block Skk sent to driver. B-step.
Row and columns blocks Sik and Skj updated. C-step. All other blocks Sij updated.

A-step B-step C-step

3.1 A-step

In the kth iteration, the A-step is written in shorthand as Skk(k) ← APSP(Skk(k−1)). In fact, the
updated BlockMatrix S(k) is not formed until the end of the C-step, and in the A-step Skk(k)
only exists on the driver. The detailed A-step is as follows:

1. The block Skk(k−1) is copied to the driver via invoking the lookup method with key
(k, k) on the BlockMatrix S(k−1)

2. The driver locally computes Skk(k) ← APSP(Skk(k−1))

Computation. Only the driver performs computation, running Floyd-Warshall on Skk(k−1). This
costs κF b3.

Bandwidth. The lookup involves a one-to-one communication between the worker holding Skk and
the driver. Exactly b2 words are transmitted.

Runtime. The runtime consists of the time taken to transmit Skk and the time to compute APSPSkk.
Therefore the total runtime is

κT b
2 + κF b

3

3.2 B-step

In the kth iteration, the B-step is written in shorthand as Skj(k) ← min(Skj(k−1), Skk(k)⊗Skj(k−1))
and Sik(k) ← min(Sik(k−1), Sik(k−1)⊗Skk(k)) in parallel. This is accomplished by the following:

1. Form the RDD rows and the RDD columns by invoking the filter method on S(k−1)

to keep only the blocks Sik(k−1) and Skj(k−1) for i = 1, . . . , ` and j = 1, . . . , `.

2. Broadcast Skk(k) from the driver to each worker holding a block in rows or columns.
There should be

√
pworkers storing blocks in rows and another

√
pworkers storing blocks

in columns. However, Spark does not allow a selective broadcast, hence Skk(k) is broad-
cast to all workers.

3. Invoke mapValues on rows to perform the update Skj(k) ← min(Skj(k−1), Skk(k) ⊗
Skj(k−1)) and similarly on cols to perform the update Sik(k) ←
min(Sik(k−1), Sik(k−1) ⊗ Skk(k))

Computation. Only the workers holding values in rows or columns perform computation, when
mapValues is invoked. Each of those workers holds n√

pb blocks to be updated. The update for

each block entails a matrix multiplication costing κMb3, so the cost per worker is κmnb2√
p , and the

total cost is 2κMb
2n.

5

Bandwidth. The broadcast step entails sending a b × b matrix from the driver to p workers.
Therefore the bandwidth is pb2.

Runtime. The runtime cost of the broadcast is
log(p)(κT b

2)

due to bittorrent broadcast. The runtime cost of computation is

κM
nb2
√
p

since each worker computes in parallel. Hence the total runtime is

log(p)κT b
2 + κM

nb2
√
p

3.3 C-step

In shorthand, the C-step is written as Sij(k) ← min(Sij(k−1), Sik(k) ⊗ Skj(k)). Here it becomes
important to note the partitioner used for the various RDDs. We assume that the same partitioner is
used for all S(0), . . . , S(`) and for the RDDs dupRows, dupCols, and temp to be defined in the
following. The partitioner assigns each worker a key (a, b) where a = 1, . . . ,

√
p and b = 1, . . . ,

√
p.

The worker (a, b) holds blocks Sij for i = (a−1) n√
p+1, . . . , a n√

p and j = (b−1) n√
p+1, . . . , b n√

p .
Define a(i), b(i) as the functions such that Sij belongs to the worker with key (a(i), a(j))

1. Create RDD dupRows by invoking flatMap on rows to flatMap the key-value pair
(a(i), a(j), Sij)

to the key-value pairs
(1, a(j), Sij), . . . , (

√
p, a(j), Sij)

2. Create RDD dupCols in an analogous way

3. Create RDD temp by joining dupCols, dupRows, and S(k−1). The order of joining
does not matter.

4. Create BlockMatrix S(k) by invoking mapValues to temp. The (a(i), b(j)) entry of
temp contains the blocks Sij(k−1), Sik(k), Skj(k) produced in the A-step and B-step. The
effect of mapValues is to produce

Sij(k) ← min(Sik(k−1), Sik(k) ⊗ Skj(k))

Computation. The computation occurs when mapValues is called. There, each worker computes
Sij(k) ← min(Sij(k−1), Sik(k) ⊗ Skj(k)) for each of its n2/(b2p) blocks. The computation per
block is κMb3, and hence the computation per worker is κM n2b

p . The total computational cost is
κMn

2b.

Bandwidth. Creation of dupRows and dupCols require bandwidth. Creation of temp and S(k)

do not require bandwidth because of the map-side join. Each block in rows and cols must be sent
to
√
p workers. Hence the bandwidth cost is 2nb

√
p.

Runtime. Creation of dupRows requires each worker holding values in rows to transmit a message
of size nb√

p to
√
p other workers. This must be done sequentially under the current version of Spark

(1.3.1) and hence takes time
κTnb

In practice, the RDD dupRows may be realized simultaneously. However, since we do not ana-
lyze scheduling, we make the simplifying assumption that dupRows is created after dupCols is
realized. Therefore, the runtime due to communication-related issues is

2κTnb

Adding the computation per worker, the total runtime is

2κTnb+ κM
n2b

p

6

3.4 Latency-Free Totals

We add up the costs derived for each step, and multiply by the number of iterations ` = n/b.

Computational cost:
κMn

3 + 2κMn
2b+ κFnb

2

Bandwidth:
2n2
√
p+ 2n

√
pb+ nb

Runtime:

κM
n3

p
+ κM

bn2
√
p

+ 2κTn
2 + κFnb

2 + (log(p) + 1)κTnb

3.5 Latency-Added Analysis

We assume a uniform network topology so the latency of transmission is the same for every pair of
workers. This is in contrast to the grid or hypercube topologies considered in most of the existing
literature on distributed APSP.

Here we will consider large-p asymptotics so that that analysis is not sensitive to the distribution of
the lag, as long as it has exponential tails.

We assume the following model for latency:

• Whenever a machine transmits a message to another machine, it must wait a random
amount of time T to make contact with the recipient. After contact is made, data is trans-
ferred at the rate 1

κT
.

• The lags T are independent and identically distributed. For i.i.d. lags Ti we have

E
p

sup
i=1

Ti = κL log p

where κL is some constant.
• Checkpointing: Writing m bytes to disk takes κCm runtime and does not cost bandwidth

nor CPU.

As a consequence of these assumptions, one-to-one communications incur zero additional runtime
due to lag, one-to-all (broadcast) communications incur κL log2 p additional runtime due to lag and
all-to-all communications incur pκL log(p) additional runtime due to lag.

Given that the algorithm involves one one-to-one communication, one one-to-all communication,
four all-to-all communications, and 1/q checkpointing operations per iteration, the added runtime
from latency and checkpointing is

L = κL(log2(p) + 4p log(p)) + κC
n2

pq

The runtime of the algorithm is given by

L
n

b
+ κM

n3

p
+ κM

bn2
√
p

+ 2κTn
2 + κFnb

2 + (log(p) + 1)κTnb

4 Correctness

4.1 Notation

We assume a complete weighted and directed graph (with all possible arcs). Any incomplete graph
is equivalent to the complete graph where missing edges are represented by infinite-weight edges.

• If i, j ∈ V , let i→ j denote the arc from i to j. An arc is also a path (of length 1).

7

• If v1, . . . , vm ∈ V , then p = v1 → · · · → vm denotes a path composed of arcs v1 →
v2, . . . , vm−1 → vm.
• Let w(p) denote the weight of the path, i.e. the weight of the arcs in the path
• If P is a set of paths, and v ∈ V , then

v → P = {v → p : p ∈ P}

and
P → v = {p→ v : p ∈ P}

• If v, w ∈ V and S ⊂ V , then

v → S → w = {v → s→ w : s ∈ S}

and

v → S∗ → w = {v → w}∪{v → s1 → w : s ∈ S}∪{v → s1 → s2 → w : s1, s2 ∈ S}∪· · ·

• If P is a set of paths,
w(P) = min

p∈P
w(p)

• If v, w ∈ V , and S,U ⊂ V , then

v → (S → U → S)∗ → w = {v → w} ∪ {v → s1 → u→ s2 → w} ∪ · · ·
= v → (S ∪ U)∗ → w

It follows that the APSP matrix S has the property

Sij = w(i→ V ∗ → j)

4.2 Shortest paths and min-plus multiplication

We review some basic principles linking shortest-path computations and min-plus multiplication
which we will use in the proof.

Let G be a graph with vertices V = V1 ∪ V2 ∪ V3. Let H denote a matrix with Hij = w(i→ j) for
i ∈ V1, j ∈ V2. Let I denote a matrix with Ijk = w(j → k) for j ∈ V2, k ∈ V3. Then it follows that
if M = H ⊗ I ,

Mik = w(i→ V2 → k)

for i ∈ V1 and k ∈ V3. Furthermore, suppose L is a matrix with Lik = w(i → k) for i ∈ V1 and
k ∈ V3. Then

(min(M,L))ik = w((i→ k) ∪ (i→ V2 → k))

for i ∈ V1 and k ∈ V3.

Let A be the adjacency matrix of G. Define A2 = A⊗A and Ak = Ak−1 ⊗A. We have

(A2)ij = w(i→ V → j)

Note that a path i → i → j or i → j → j collapses to i → j since Aii = Ajj = 0. Also note that
APSP(A) = A∞. Therefore

(APSP(A))ij = (A∞)ij = w(i→ V ∗ → j)

4.3 Proof

Let V = V1 ∪ · · · ∪ V` where Vi = {(b(i − 1) + 1, · · · , bi}. Let Wi =
⋃i
k=1 Vi, where W0 = ∅.

Correctness follows if we can show that for k = 0, . . . , `, we have

S
(k)
ij = w(i→W ∗k → j)

Fix `. We proceed by finite induction on k.

Base case.

8

Recall that S(0) = A. Then
S
(0)
ij = Aij = w(i→ j) = w(i→ ∅∗ → j)

so the base case k = 0 is established.

Induction.

Assume
S
(k−1)
ab = w(a→W ∗k−1 → b)

Then in the kth iteration, the A-step computes Skk(k) ← APSP(Skk(k−1)). Thus we have

S
kk(k)
ab = w(a→ (W ∗k−1 → V ∗k →W ∗k−1)∗ → b) = w(a→W ∗k → b)

From the B-step we have Skj(k) ← min(Skj(k−1), Skk(k) ⊗ Skj(k−1)) and Sik(k) ←
min(Sik(k−1), Sik(k) ⊗ Skk(k)). Therefore,

S
ik(k)
ab = w((a→W ∗k−1 → b) ∪ (a→W ∗k → Vk →W ∗k−1 → b))

= w(a→W ∗k → b)

and similarly
S
ki(k)
ab = w(a→W ∗k → b)

Therefore in the C-step, which computes Sij(k) ← min(Sij(k−1), Sik(k) ⊗ Skj(k)), we have

S
ij(k)
ab = w((a→W ∗k−1 → b) ∪ (a→W ∗k → Vk →W ∗k → b))

= w(a→W ∗k → b)

Hence we have shown
S
(k)
ab = w(a→W ∗k → b)

as needed.

5 Results

To implement the algorithm in Spark, we make use of the BlockMatrix class in Mllib. The two
main operations in our algorithm: min(A,B) and A⊗B of matrices A and B are analogous to the
“add” and “multiply” operations of matrices. Thus, we also use the Grid Partitioner defined in the
BlockMatrix class to avoid unnecessary shuffling of data in these operations. Similar to operations
implemented in the BlockMatrix class, our local matrix operations min(A,B) and A⊗B are done
via the Breeze matrix operations.

One other technique we use is checkpointing. In each iteration, we are updating the whole n × n
shortest paths matrix S, which is stored as an RDD. Since RDDs are immutable, we thus keep
generating new RDDs depending on the RDD of the previous iteration, which causes the length of
the RDD lineage to keep increasing with the number of iterations. By periodically checkpointing
and materializing the RDD using count(), the data can be saved to disk and the lineage of RDDs
can be truncated. We checkpoint the RDDs every 20 iterations following Meng and Das (2014)’s
suggestions.

We run the algorithm for n = 500 and n = 1000 on a local computer with 4 cores and 8GB
memory in total. We thus pick p = 4 as the total number of partitions/workers. Figure 2 shows the
total runtime for different block sizes. The use of blocks reduces the runtime of distributed Floyd-
Warshall substantially. The optimal block size b depends on the trade-off between reduced latency
time and the extra computation time both due to fewer iterations ` = n

b . In our experiment, for both
n = 500 and n = 1000, b = 250 performs the best among all the choices.

However, we also observe that the latency time, which is the dominating time cost when the block
size is small is not growing linearly in n as expected. We find out that the frequency of checkpointing
is also very influential to the performance, which has not been counted properly into our calculations
of cost. Figure 3 shows for n = 1000 and b = 10 how the checkpointing frequency influences the
total run time. The result suggests that we may need to have check points more frequently than every
20 iterations. Deciding the optimal checkpointing strategy is an open problem, and is beyond the
scope of this report.

The code is publicly available at https://github.com/arzavj/spark-all-pairs-shortest-path.

9

Block Size (b)

To
ta

l t
im

e
(s

)

1 2 5 10 50 100 250
0

50

100

150

200

170.8

85.8

39.4

22.2

5 3.4 2.2

(a) n = 500

Block Size (b)

To
ta

l t
im

e
(s

)

2 5 10 50 100 250 500
0

200

400

600

800
728.4

300.2

159.6

44.4
22 16.6 23.8

(b) n = 1000

Figure 2: The total run time versus the block size. The total run time is in seconds. The error bars
are the standard deviations of 5 random runs.

Checkpointing Interval (# of interations)

To
ta

l t
im

e
(s

)

1 2 5 10 20
0

200

50.8
45.8

61.8

92.2

160.6

Figure 3: The total run time versus checkpointing intervals for n = 1000, b = 10. The total run time
is in seconds. The error bars are the standard deviations of 5 random runs.

6 References

• Buluc, Aydn, John R. Gilbert, and Ceren Budak. ”Solving path problems on the GPU.”
Parallel Computing 36.5 (2010): 241-253.

• Zaharia, M., & Chowdhury, M. (2010). Spark: cluster computing with working sets.

• Kumar, V., & Singh, V. (1991). Scalability of parallel algorithms for the all-pairs
shortest-path problem. Journal of Parallel and Distributed Computing, 13(2), 124138.
doi:10.1016/0743-7315(91)90083-L

• Solomonik, E., Buluc, A., & Demmel, J. (2013). Minimizing communication in all-pairs
shortest paths. Proceedings - IEEE 27th International Parallel and Distributed Processing
Symposium, IPDPS 2013, 548559. doi:10.1109/IPDPS.2013.111

• Meng, Xiangrui & Das, Tathagata (2014). Re: java.lang.StackOverflowError when call-
ing count(). Retrived from http://apache-spark-user-list.1001560.n3.nabble.com/java-lang-
StackOverflowError-when-calling-count-td5649.html

10

• Jain, Arzav,. Wang, Jingshu., Zheng, Charles. spark-all-pairs-shortest-path.
https://github.com/arzavj/spark-all-pairs-shortest-path

11

	Summary
	Problem Specification
	Scaling
	Notation
	Algorithm
	Optimality
	Communication Cost and Type
	Summary of Results

	Background
	Complexity Analysis
	A-step
	B-step
	C-step
	Latency-Free Totals
	Latency-Added Analysis

	Correctness
	Notation
	Shortest paths and min-plus multiplication
	Proof

	Results
	References

