
CASCADING
VECTOR

MACHINES
Carlos Riquelme, Lan Nguyen, Sven Schmit

CME 323

OUTLINE
Support vector machines
Kernel SVM
How to parallelize in pySpark
Experiments
Take aways

SUPPORT VECTOR
MACHINES

General method for regression and classification

BINARY
CLASSIFICATION

Find hyperplane that maximizes margin

Support vectors

SUPPORT VECTORS
SOLUTION

⇔

No change if we (re)move other observations

KERNEL SVM

Find (linear) hyperplane in higher/infinite dimensional
space

5000 data points

HOW DOES KERNEL SVM
SCALE?

requires kernel matrix K ∈ ℝn×n

INFEASIBLE FOR LARGE n
libsvm QP solver runs in Θ(p)n2

CASCADE SVM
Key: Only points on the margin are relevant [1]

THROW AWAY IRRELEVANT
POINTS EARLY

CODE FOR SINGLE PASS
def cascade(labeledPointRDD, reducer, nmax):
 n = labeledPointRDD.count()
 numPartitions = int(2**(np.ceil(np.log(n / nmax) / np.log(2.0))))
 leafsRDD = labeledPointRDD.repartition(numPartitions)

 while numPartitions > 1:
 numPartitions = int(numPartitions / 2)

 # need cache against lazy evaluation
 leafsRDD = leafsRDD.mapPartitions(reducer, True) \
 .coalesce(numPartitions) \
 .cache()

 return leafsRDD.collect()

reducer: fit SVM and keep support vectors

5000 data points

CASCADE X
Can apply same cascade to other procedures

L1VM
Kernel Logistic Regression with penalty
etc.

l1

ALTERNATIVES
Subsample data
Low-rank approximation of
Big memory machine

K

PARALLELIZATION

HOW TO REPRESENT DATA
Every observation is a LabeledPoint

Every partition contains a subset of the observations

SCALABILITY
Reduce complexity in , keep complexity in n d

Assumption we can solve SVM of size , then:()n‾√

number of partitions
number of levels

k ∼ ()n‾√
L ∼ (log(n))

RUN TIME
Solve SVM in , for , on single machine(d)nα 2 < α < 3

CASCADE SVM:
(d log(n)) < (d log(n))nα/2 n3/2

Reduction factor of / log(n)nα/2

COMMUNICATION TYPES
Repartition: all-to-all
Coalesce: merge 2 partitions
Broadcast model: 1-to-all

COMMUNICATION COST
Repartition data:

Coalesce:

Distribute model:

dn

= (dn)d(2 −1)n√ n√
4

d n‾√

PERFORMANCE

MNIST

60k training set, 10k test set

BENCHMARKS
Lower bound: subsample data
Upper bound: fit SVM on full dataset

REGULAR SVM
2k subsample: 6.5% error
10k subsample: 3.5% error
60k full sample: 1.7% error

CASCADE SVM
2k svms: 4.6% error
10k svms: 2.1% error

[1] show optimality with multiple loops

TAKE AWAYS

Using cascades we can parallelize SVMs
Good if number of SV <
Can extend to similar 'kernel' methods

n‾√

REFERENCES
[1] Graf, Hans P., et al. "Parallel support vector machines:

The cascade svm." Advances in neural information processing systems.
2004.

QUESTIONS?

