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SUPPORT VECTOR
MACHINES



General method for regression and classification



BINARY
CLASSIFICATION



Find hyperplane that maximizes margin

Support vectors



SUPPORT VECTORS 
SOLUTION

⇔

No change if we (re)move other observations



KERNEL SVM



Find (linear) hyperplane in higher/infinite dimensional
space



5000 data points



HOW DOES KERNEL SVM
SCALE?

requires kernel matrix K ∈ ℝn×n



INFEASIBLE FOR LARGE n
libsvm QP solver runs in Θ( p)n2



CASCADE SVM
Key: Only points on the margin are relevant [1]



THROW AWAY IRRELEVANT
POINTS EARLY





CODE FOR SINGLE PASS
def cascade(labeledPointRDD, reducer, nmax):
    n = labeledPointRDD.count()
    numPartitions = int(2**(np.ceil(np.log(n / nmax) / np.log(2.0))))
    leafsRDD = labeledPointRDD.repartition(numPartitions)

    while numPartitions > 1:
        numPartitions = int(numPartitions / 2)

        # need cache against lazy evaluation
        leafsRDD = leafsRDD.mapPartitions(reducer, True) \
                           .coalesce(numPartitions) \
                           .cache()

    return leafsRDD.collect()

reducer: fit SVM and keep support vectors



5000 data points



CASCADE X
Can apply same cascade to other procedures

L1VM
Kernel Logistic Regression with  penalty
etc.

l1



ALTERNATIVES
Subsample data
Low-rank approximation of 
Big memory machine

K



PARALLELIZATION



HOW TO REPRESENT DATA
Every observation is a LabeledPoint

Every partition contains a subset of the observations



SCALABILITY
Reduce complexity in , keep complexity in n d



Assumption we can solve SVM of size , then:( )n‾√

number of partitions 
number of levels 

k ∼ ( )n‾√
L ∼ (log(n))



RUN TIME
Solve SVM in , for , on single machine(d )nα 2 < α < 3

CASCADE SVM:
(d log(n)) < (d log(n))nα/2 n3/2

Reduction factor of / log(n)nα/2



COMMUNICATION TYPES
Repartition: all-to-all
Coalesce: merge 2 partitions
Broadcast model: 1-to-all



COMMUNICATION COST
Repartition data: 

Coalesce: 

Distribute model: 

dn

= (dn)d(2 −1)n√ n√
4

d n‾√



PERFORMANCE



MNIST

60k training set, 10k test set



BENCHMARKS
Lower bound: subsample data
Upper bound: fit SVM on full dataset



REGULAR SVM
2k subsample: 6.5% error
10k subsample: 3.5% error
60k full sample: 1.7% error

CASCADE SVM
2k svms: 4.6% error
10k svms: 2.1% error

[1] show optimality with multiple loops



TAKE AWAYS



Using cascades we can parallelize SVMs
Good if number of SV < 
Can extend to similar 'kernel' methods

n‾√
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QUESTIONS?


