CASCADING VECTOR MACHINES

Carlos Riquelme, Lan Nguyen, Sven Schmit

CME 323

OUTLINE

- Support vector machines
- Kernel SVM
- How to parallelize in pySpark
- Experiments
- Take aways

SUPPORT VECTOR MACHINES

BINARY CLASSIFICATION

Find hyperplane that maximizes margin

Support vectors

SUPPORT VECTORS ⇔ SOLUTION

No change if we (re)move other observations

KERNEL SVM

Find (linear) hyperplane in higher/infinite dimensional space

5000 data points

HOW DOES KERNEL SVM SCALE?

requires kernel matrix $K \in \mathbb{R}^{n \times n}$

INFEASIBLE FOR LARGE n

libsvm QP solver runs in $\Theta(n^2p)$

CASCADE SVM

Key: Only points on the margin are relevant [1]

THROW AWAY IRRELEVANT POINTS EARLY

CODE FOR SINGLE PASS

reducer: fit SVM and keep support vectors

5000 data points

CASCADE X

Can apply same cascade to other procedures

- L1VM
- Kernel Logistic Regression with l_1 penalty
- etc.

ALTERNATIVES

- Subsample data
- Low-rank approximation of *K*
- Big memory machine

PARALLELIZATION

HOW TO REPRESENT DATA

Every observation is a LabeledPoint

Every partition contains a subset of the observations

SCALABILITY

Reduce complexity in n, keep complexity in d

Assumption we can solve SVM of size $\mathcal{O}(\sqrt{n})$, then:

- number of partitions $k \sim \mathcal{O}(\sqrt{n})$
- number of levels $L \sim \mathcal{O}(\log(n))$

RUN TIME

Solve SVM in $\mathcal{O}(dn^{\alpha})$, for $2 < \alpha < 3$, on single machine

CASCADE SVM:

 $\mathcal{O}(dn^{\alpha/2}\log(n)) < \mathcal{O}(dn^{3/2}\log(n))$

Reduction factor of $n^{\alpha/2}/\log(n)$

COMMUNICATION TYPES

- Repartition: all-to-all
- Coalesce: merge 2 partitions
- Broadcast model: 1-to-all

COMMUNICATION COST

- Repartition data: dn
- Coalesce: $\frac{d(2\sqrt{n}-1)\sqrt{n}}{4} = \mathcal{O}(dn)$
- Distribute model: $d\sqrt{n}$

PERFORMANCE

MNIST

```
0000000000000000
/ 1 | | / 4 | / 7 1 | / / / /
222222222222
5555555555555555
6666666666666
ファチ17フフフフフフフフ)フ
9999999999999
```

60k training set, 10k test set

BENCHMARKS

- Lower bound: subsample data
- **Upper bound**: fit SVM on full dataset

REGULAR SVM

- 2k subsample: 6.5% error
- 10k subsample: 3.5% error
- 60k full sample: 1.7% error

CASCADE SVM

- 2k syms: 4.6% error
- 10k syms: 2.1% error
- [1] show optimality with multiple loops

TAKE AWAYS

- Using cascades we can parallelize SVMs
- Good if number of SV $\leq \sqrt{n}$
- Can extend to similar 'kernel' methods

REFERENCES

[1] Graf, Hans P., et al. "Parallel support vector machines: The cascade sym." *Advances in neural information processing systems*. 2004.

QUESTIONS?