
Distributed Deep Q-Learning

Hao Yi Ong

joint work with K. Chavez, A. Hong

Stanford University

Box, 6/3/15



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Introduction 2/39



Motivation

I long-standing challenge of reinforcement learning (RL)

– control with high-dimensional sensory inputs (e.g., vision, speech)
– shift away from reliance on hand-crafted features

I utilize breakthroughs in deep learning for RL [M+13, M+15]

– extract high-level features from raw sensory data
– learn better representations than handcrafted features with neural

network architectures used in supervised and unsupervised learning

I create fast learning algorithm

– train efficiently with stochastic gradient descent (SGD)
– distribute training process to accelerate learning [DCM+12]

Introduction 3/39



Success with Atari games

Introduction 4/39



Theoretical complications

deep learning algorithms require

I huge training datasets

– sparse, noisy, and delayed reward signal in RL
– delay of ∼ 103 time steps between actions and resulting rewards
– cf. direct association between inputs and targets in supervised

learning

I independence between samples

– sequences of highly correlated states in RL problems

I fixed underlying data distribution

– distribution changes as RL algorithm learns new behaviors

Introduction 5/39



Goals

distributed deep RL algorithm

I robust neural network agent

– must succeed in challenging test problems

I control policies with high-dimensional sensory input

– obtain better internal representations than handcrafted features

I fast training algorithm

– efficiently produce, use, and process training data

Introduction 6/39



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Reinforcement learning 7/39



Playing games

Environment:	
  
Game	
  emulator	
  

Agent	
  

Ac3on:	
  
Game	
  input	
  

State:	
  
Series	
  of	
  screens	
  	
  

and	
  inputs	
  

Reward:	
  
Game	
  score	
  change	
  

objective: learned policy maximizes future rewards

Rt =

T∑
t′=t

γt′−trt′ ,

I discount factor γ
I reward change at time t′ rt′

Reinforcement learning 8/39



State-action value function

I basic idea behind RL is to estimate

Q? (s, a) = max
π

E [Rt | st = s, at = a, π] ,

where π maps states to actions (or distributions over actions)

I optimal value function obeys Bellman equation

Q? (s, a) = E
s′∼E

[
r + γmax

a′
Q? (s′, a′) | s, a

]
,

where E is the MDP environment

Reinforcement learning 9/39



Value approximation

I typically, a linear function approximator is used to estimate Q?

Q (s, a; θ) ≈ Q? (s, a) ,

which is parameterized by θ

I we introduce the Q-network

– nonlinear neural network state-action value function approximator
– “Q” for Q-learning

Reinforcement learning 10/39



Q-network

I trained by minimizing a sequence of loss functions

Li (θi) = E
s,a∼ρ(·)

[
(yi −Q (s, a; θi))

2
]
,

with

– iteration number i

– target yi = Es′∼E [r + γmaxa′ Q (s′, a′; θi−1) | s, a]

– “behavior distribution” (exploration policy) ρ (s, a)

I architecture varies according to application

Reinforcement learning 11/39



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Serial algorithm 12/39



Preprocessing

raw	
  screen	
   downsample	
  +	
  grayscale	
  

final	
  input	
  

Serial algorithm 13/39



Network architecture

Serial algorithm 14/39



Convolutional neural network

I biologically-inspired by the visual cortex

I CNN example: single layer, single frame to single filter, stride = 1

Serial algorithm 15/39



Stochastic gradient descent

I optimize Q-network loss function by gradient descent

Q (s, a; θ) := Q (s, a; θ) + α∇θQ (s, a; θ) ,

with

– learning rate α

I for computational expedience

– update weights after every time step
– avoid computing full expectations
– replace with single samples from ρ and E

Serial algorithm 16/39



Q-learning

Q (s, a) := Q (s, a) + α
(
r + γmax

a′
Q (s′, a′)−Q (s, a)

)
I model free RL

– avoids estimating E

I off-policy

– learns policy a = argmaxa Q (s, a; θ)
– uses behavior distribution selected by an ε-greedy strategy

Serial algorithm 17/39



Experience replay

a kind of short-term memory

I trains optimal policy using “behavior policy” (off-policy)

– learns policy π? (s) = argmaxa Q (s, a; θ)
– uses an ε-greedy strategy (behavior policy) for state-space exploration

I store agent’s experiences at each time step

et = (st, at, rt, st+1)

– experiences form a replay memory dataset with fixed capacity
– execute Q-learning updates with random samples of experience

Serial algorithm 18/39



Serial deep Q-learning

given replay memory D with capacity N

initialize Q-networks Q, Q̂ with same random weights θ

repeat until timeout
initialize frame sequence s1 = {x1} and preprocessed state φ1 = φ (s1)
for t = 1, . . . , T

1. select action at =

{
maxa Q (φ (st) , a; θ) w.p. 1− ε
random action otherwise

2. execute action at and observe reward rt and frame xt+1

3. append st+1 = (st, at, xt+1) and preprocess φt+1 = φ (st+1)
4. store experience (φt, at, rt, φt+1) in D
5. uniformly sample minibatch (φj , aj , rj , φj+1) ∼ D

6. set yj =

{
rj if φj+1 terminal

rj + γmaxa′ Q̂ (φj+1, a
′; θ) otherwise

7. perform gradient descent step for Q on minibatch

8. every C steps reset Q̂ = Q

Serial algorithm 19/39



Theoretical complications

deep learning algorithms require

I huge training datasets

I independence between samples

I fixed underlying data distribution

Serial algorithm 20/39



Deep Q-learning

avoids theoretical complications

I greater data efficiency

– each experience potentially used in many weight udpates

I reduce correlations between samples

– randomizing samples breaks correlations from consecutive samples

I experience replay averages behavior distribution over states

– smooths out learning
– avoids oscillations or divergence in gradient descent

Serial algorithm 21/39



Cat video

Mini-break 22/39



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Distributed algorithm 23/39



Data parallelism

downpour SGD: generic asynchronous distributed SGD

θ := θ + αθ

θ	
  Δθ	
  

Distributed algorithm 24/39



Model parallelism

on each worker machine

I computation of gradient is pushed down to hardware

– parallelized according to available CPU/GPU resources
– uses the Caffe deep learning framework

I complexity scales linearly with number of parameters

– GPU provides speedup, but limits model size
– CPU slower, but model can be much larger

Distributed algorithm 25/39



Implementation

I data shards are generated locally on each model worker in real-time

– data is stored independently for each worker
– since game emulation is simple, generating data is fast
– simple fault tolerance approach: regenerate data if worker dies

I algorithm scales very well with data

– since data lives locally on workers, no data is sent

I update parameter with gradients using RMSprop or AdaGrad

I communication pattern: multiple asynchronous all-reduces

– one-to-all and all-to-one, but asynchronous for every minibatch

Distributed algorithm 26/39



Implementation

I bottleneck is parameter update time on parameter server

– e.g., if parameter server gradient update takes 10 ms, then we can
only do up to 100 updates per second (using buffers, etc.)

I trade-off between parallel updates and model staleness

– because worker is likely using a stale model, the updates are “noisy”
and not of the same quality as in serial implementation

Distributed algorithm 27/39



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Numerical experiments 28/39



Evaluation

Numerical experiments 29/39



Snake

I parameters

– snake length grows with number of apples eaten (+1 reward)
– one apple at any time, regenerated once eaten
– n× n array, with walled-off world (−1 if snake dies)
– want to maximize score, equal to apples eaten (minus 1)

I complexity

– four possible states for each cell: {empty, head, body, apple}
– state space cardinality is O

(
n42n

2
)
(-ish)

– four possible actions: {north, south, east, west}

Numerical experiments 30/39



Software

I at initialization, broadcast neural network architecture

– each worker spawns Caffe with architecture
– populates replay dataset with experiences via random policy

I for some number of iterations:

– workers fetch latest parameters for Q network from server
– compute and send gradient update
– parameters updated on server with RMSprop or AdaGrad (requires

O(p) memory and time)

I Lightweight use of Spark

– shipping required files and serialized code to worker machines
– partitioning and scheduling number of updates to do on each worker
– coordinating identities of worker/server machines
– partial implementation of generic interface between Caffe and Spark

I ran on dual core Intel i7 clocked at 2.2 GHz, 12 GB RAM

Numerical experiments 31/39



Complexity analysis

I model complexity

– determined by architecture; roughly on the order of number of
parameters

I gradient calculation via backpropagation

– distributed across worker’s CPU/GPU, linear with model size

I communication time and cost

– for each update, linear with model size

Numerical experiments 32/39



Compute/communicate times

I compute/communicate time scales linearly with model size

0 2 4 6 8

·106

0

50

100

150

number of parameters

ex
p
er
im

en
ta
l
ti
m
es

comms (x1 ms)

gradient (x100 ms)

latency (x1 ms)

– process is compute-bound by gradient calculations
– upper bound on update rate inversely proportional to model size
– with many workers in parallel, independent of batch size

Numerical experiments 33/39



Serial vs. distributed

I performance scales linearly with number of workers

0 100 200 300

−1

0

1

wall clock time (min)

av
er
ag
e
re
w
ar
d

serial
double

Numerical experiments 34/39



Example game play

Figure: Dumb snake. Figure: Smart snake.

Numerical experiments 35/39



Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Conclusion 36/39



Summary

I deep Q-learning [M+13, M+15] scales well via DistBelief [DCM+12]

I asynchronous model updates accelerate training despite lower
update quality (vs. serial)

Conclusion 37/39



Contact

questions, code, ideas, go-karting, swing dancing, . . .

haoyi.ong@gmail.com

Conclusion 38/39

mailto:haoyi.ong@gmail.com


References

I Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks.
In Advances in Neural Information Processing Systems, pages
1223–1231, 2012.

I V. Mnih et al.
Playing Atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

I V. Mnih et al.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

39/39


	Introduction
	Reinforcement learning
	Serial algorithm
	Distributed algorithm
	Numerical experiments
	Conclusion

	anm0: 
	anm1: 
	anm2: 
	anm3: 


