Distributed Deep Q-Learning

Hao Yi Ong

joint work with K. Chavez, A. Hong Stanford University

Box, 6/3/15

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Introduction 2/39

Motivation

- ▶ long-standing challenge of reinforcement learning (RL)
 - control with high-dimensional sensory inputs (e.g., vision, speech)
 - shift away from reliance on hand-crafted features
- ▶ utilize breakthroughs in deep learning for RL [M+13, M+15]
 - extract high-level features from raw sensory data
 - learn better representations than handcrafted features with neural network architectures used in supervised and unsupervised learning
- create fast learning algorithm
 - train efficiently with stochastic gradient descent (SGD)
 - distribute training process to accelerate learning [DCM⁺12]

Introduction 3/39

Success with Atari games

Introduction 4/39

Theoretical complications

deep learning algorithms require

- huge training datasets
 - sparse, noisy, and delayed reward signal in RL
 - delay of $\sim 10^3$ time steps between actions and resulting rewards
 - cf. direct association between inputs and targets in supervised learning
- ▶ independence between samples
 - sequences of highly correlated states in RL problems
- fixed underlying data distribution
 - distribution changes as RL algorithm learns new behaviors

Introduction 5/39

Goals

distributed deep RL algorithm

- robust neural network agent
 - must succeed in challenging test problems
- control policies with high-dimensional sensory input
 - obtain better internal representations than handcrafted features
- ► fast training algorithm
 - efficiently produce, use, and process training data

Introduction 6/39

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Playing games

objective: learned policy maximizes future rewards

$$R_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'},$$

- ightharpoonup discount factor γ
- ightharpoonup reward change at time t' $r_{t'}$

State-action value function

basic idea behind RL is to estimate

$$Q^{\star}(s, a) = \max_{\pi} \mathbf{E} \left[R_t \mid s_t = s, a_t = a, \pi \right],$$

where π maps states to actions (or distributions over actions)

optimal value function obeys Bellman equation

$$Q^{\star}\left(s,a\right) = \operatorname*{\mathbf{E}}_{s^{\prime}\sim\mathcal{E}}\left[r + \gamma\max_{a^{\prime}}Q^{\star}\left(s^{\prime},a^{\prime}\right)\mid s,a\right],$$

where \mathcal{E} is the MDP environment

Value approximation

lacktriangle typically, a linear function approximator is used to estimate Q^\star

$$Q(s, a; \theta) \approx Q^{\star}(s, a)$$
,

which is parameterized by θ

- ▶ we introduce the Q-network
 - nonlinear neural network state-action value function approximator
 - "Q" for Q-learning

Q-network

trained by minimizing a sequence of loss functions

$$L_{i}(\theta_{i}) = \underset{s, a \sim \rho(\cdot)}{\mathbf{E}} \left[\left(y_{i} - Q(s, a; \theta_{i}) \right)^{2} \right],$$

with

- iteration number i
- target $y_i = \mathbf{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q\left(s', a'; \theta_{i-1}\right) \mid s, a \right]$
- "behavior distribution" (exploration policy) $\rho(s, a)$
- architecture varies according to application

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Serial algorithm 12/39

Preprocessing

Serial algorithm 13/39

Network architecture

Serial algorithm 14/39

Convolutional neural network

- biologically-inspired by the visual cortex
- ► CNN example: single layer, single frame to single filter, stride = 1

Serial algorithm 15/39

Stochastic gradient descent

optimize Q-network loss function by gradient descent

$$Q(s, a; \theta) := Q(s, a; \theta) + \alpha \nabla_{\theta} Q(s, a; \theta),$$

with

- learning rate α
- for computational expedience
 - update weights after every time step
 - avoid computing full expectations
 - replace with single samples from ho and $\mathcal E$

Serial algorithm 16/39

Q-learning

$$Q\left(s,a\right):=Q\left(s,a\right)+\alpha\left(r+\gamma\max_{a'}Q\left(s',a'\right)-Q\left(s,a\right)\right)$$

- model free RI
 - avoids estimating ${\mathcal E}$
- off-policy
 - learns policy $a = \operatorname{argmax}_a Q(s, a; \theta)$
 - uses behavior distribution selected by an ϵ -greedy strategy

Serial algorithm 17/39

Experience replay

- a kind of short-term memory
 - trains optimal policy using "behavior policy" (off-policy)
 - learns policy $\pi^{\star}(s) = \operatorname{argmax}_{a} Q(s, a; \theta)$
 - uses an ϵ -greedy strategy (behavior policy) for state-space exploration
 - store agent's experiences at each time step

$$e_t = (s_t, a_t, r_t, s_{t+1})$$

- experiences form a replay memory dataset with fixed capacity
- execute Q-learning updates with random samples of experience

Serial algorithm 18/39

Serial deep Q-learning

 $\mathbf{given} \ \text{replay memory} \ \mathcal{D} \ \text{with capacity} \ N$

initialize Q-networks $Q,\,\hat{Q}$ with same random weights θ repeat until timeout

initialize frame sequence
$$s_1 = \{x_1\}$$
 and preprocessed state $\phi_1 = \phi\left(s_1\right)$ for $t=1,\ldots,T$

- $1. \text{ select action } a_t = \left\{ \begin{array}{ll} \max_a Q\left(\phi\left(s_t\right), a; \theta\right) & \text{ w.p. } 1 \epsilon \\ \text{ random action} & \text{ otherwise} \end{array} \right.$
- 2. execute action a_t and observe reward r_t and frame x_{t+1}
- 3. append $s_{t+1} = (s_t, a_t, x_{t+1})$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
- 4. store experience $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
- 5. uniformly sample minibatch $(\phi_j, a_j, r_j, \phi_{j+1}) \sim \mathcal{D}$

6. set
$$y_j = \left\{ egin{array}{ll} r_j & \text{if } \phi_{j+1} \text{ terminal} \\ r_j + \gamma \max_{a'} \hat{Q}\left(\phi_{j+1}, a'; heta
ight) & \text{otherwise} \end{array}
ight.$$

- 7. perform gradient descent step for Q on minibatch
- 8. every C steps reset $\hat{Q} = Q$

Theoretical complications

deep learning algorithms require

- huge training datasets
- ► independence between samples
- fixed underlying data distribution

Serial algorithm 20/39

Deep Q-learning

avoids theoretical complications

- greater data efficiency
 - each experience potentially used in many weight udpates
- reduce correlations between samples
 - randomizing samples breaks correlations from consecutive samples
- experience replay averages behavior distribution over states
 - smooths out learning
 - avoids oscillations or divergence in gradient descent

Serial algorithm 21/39

Cat video

Mini-break 22/39

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Data parallelism

downpour SGD: generic asynchronous distributed SGD

Model parallelism

on each worker machine

- computation of gradient is pushed down to hardware
 - parallelized according to available CPU/GPU resources
 - uses the Caffe deep learning framework
- complexity scales linearly with number of parameters
 - GPU provides speedup, but limits model size
 - CPU slower, but model can be much larger

Implementation

- data shards are generated locally on each model worker in real-time
 - data is stored independently for each worker
 - since game emulation is simple, generating data is fast
 - simple fault tolerance approach: regenerate data if worker dies
- algorithm scales very well with data
 - since data lives locally on workers, no data is sent
- update parameter with gradients using RMSprop or AdaGrad
- communication pattern: multiple asynchronous all-reduces
 - one-to-all and all-to-one, but asynchronous for every minibatch

Implementation

- bottleneck is parameter update time on parameter server
 - e.g., if parameter server gradient update takes 10 ms, then we can only do up to 100 updates per second (using buffers, etc.)
- trade-off between parallel updates and model staleness
 - because worker is likely using a stale model, the updates are "noisy" and not of the same quality as in serial implementation

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Evaluation

Snake

parameters

- snake length grows with number of apples eaten (+1 reward)
- one apple at any time, regenerated once eaten
- $-n \times n$ array, with walled-off world (-1 if snake dies)
- want to maximize score, equal to apples eaten (minus 1)

complexity

- four possible states for each cell: {empty, head, body, apple}
- state space cardinality is $O\left(n^42^{n^2}\right)$ (-ish)
- four possible actions: {north, south, east, west}

Software

- at initialization, broadcast neural network architecture
 - each worker spawns Caffe with architecture
 - populates replay dataset with experiences via random policy
- for some number of iterations:
 - workers fetch latest parameters for Q network from server
 - compute and send gradient update
 - parameters updated on server with RMSprop or AdaGrad (requires O(p) memory and time)
- Lightweight use of Spark
 - shipping required files and serialized code to worker machines
 - partitioning and scheduling number of updates to do on each worker
 - coordinating identities of worker/server machines
 - partial implementation of generic interface between Caffe and Spark
- ran on dual core Intel i7 clocked at 2.2 GHz, 12 GB RAM

Complexity analysis

- model complexity
 - determined by architecture; roughly on the order of number of parameters
- gradient calculation via backpropagation
 - distributed across worker's CPU/GPU, linear with model size
- communication time and cost
 - for each update, linear with model size

Compute/communicate times

compute/communicate time scales linearly with model size

- process is compute-bound by gradient calculations
- upper bound on update rate inversely proportional to model size
- with many workers in parallel, independent of batch size

Serial vs. distributed

performance scales linearly with number of workers

Example game play

Figure: Dumb snake.

Figure: Smart snake.

Outline

Introduction

Reinforcement learning

Serial algorithm

Distributed algorithm

Numerical experiments

Conclusion

Conclusion 36/39

Summary

- ▶ deep Q-learning [M⁺13, M⁺15] scales well via DistBelief [DCM⁺12]
- asynchronous model updates accelerate training despite lower update quality (vs. serial)

Conclusion 37/39

Contact

questions, code, ideas, go-karting, swing dancing, \dots

 ${\tt haoyi.ong@gmail.com}$

Conclusion 38/39

References

- ▶ Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks.

 In Advances in Neural Information Processing Systems, pages 1223–1231, 2012.
- V. Mnih et al. Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529−533, 2015.