
Distributed Minimum Spanning Trees

Swaroop Indra Ramaswamy & Rohit Patki

June 3, 2015

Abstract

Minimum spanning trees are one of the most important primitives used in graph algorithms. They find
applications in numerous fields ranging from taxonomy to image processing to computer networks. In this
report, we present 3 algorithms to compute the minimum spanning tree (MST) or minimum spanning for-
est (MSF) for large graphs which do not fit in the memory of a single machine. We analyze the theoretical
processing time, communication cost and communication time for these algorithms under certain assump-
tions. Finally, we compare the performance of the 3 algorithms on real-world data using Apache Spark
[1]. The code for the project can be found here. https://github.com/s-ramaswamy/CME-323-project

1 Introduction
The spanning tree of a connected, undirected graph is a subgraph of the graph, that is a tree that connects
all the vertices. The minimum spanning tree is the spanning tree with least sum of edge weights. The
minimum spanning forest is a generalization of the minimum spanning tree for unconnected graphs. A
minimum spanning forests consists of minimum spanning trees on each of the connected components of the
graph.

2 Applications
Minimum spanning trees find applications in a range of fields. A few of them are listed below.

• They are an important part of many approximation algorithms for NP-hard and NP-complete problems.
For example, the first step in most approximation algorithms for the Steiner tree problem requires
computing the MST. It is also the first step in the Christofede’s algorithm for the traveling salesman
problem.

• They find numerous applications in image processing. For example, if you have an image of cells on a
slide, then you could use the minimum spanning tree of the graph formed by the nuclei to describe the
arrangement of these cells.

• They are the basis for single-linkage clustering. Single-linkage clustering is a hierarchical clustering
method. Each element is in its own cluster at the beginning. The clusters are then sequentially
combined into larger clusters, until all elements end up being in the same cluster. At each step, the
two clusters separated by the shortest distance are combined. We will later see that this process
basically mimics the Kruskal’s algorithm for constructing the MST.

• An obvious application of MST is in construction of road or telephone networks. We would like to
connect places/houses with the minimum length of road/wire possible. This is exactly the same as
computing the minimum spanning tree.

1

3 Properties

3.1 Cut property
Theorem 3.1 For any cut C in the graph, if the weight of an edge e of C is strictly smaller than the weights
of all other edges of C, then this edge belongs to all MSTs of the graph.

Proof Assume the contrary, i.e., in the figure at the bottom, make edge BC (weight 6) part of the MST
T instead of edge e (weight 4). Adding e to T will produce a cycle, while replacing BC with e would
produce MST of smaller weight. Thus, a tree containing BC is not a MST, a contradiction that violates our
assumption.

Figure 1: This figure shows the cut property of MST. T is the only MST of the given graph. If S =
{A,B,D,E}, thus V − S = {C,F}, then there are 3 possibilities of the edge across the cut (S, V − S), they
are edges BC, EC, EF of the original graph. Then, e is one of the minimum-weight-edge for the cut, therefore
S ∪ {e} is part of the MST T .

3.2 Cycle property
Theorem 3.2 For any cycle C in the graph, if the weight of an edge e of C is larger than the individual
weights of all other edges of C, then this edge cannot belong to a MST.

Proof Assume the contrary, i.e. that e belongs to an MST T1. Then deleting e will break T1 into two
subtrees with the two ends of e in different subtrees. The remainder of C reconnects the subtrees, hence
there is an edge f of C with ends in different subtrees, i.e., it reconnects the subtrees into a tree T2 with
weight less than that of T1, because the weight of f is less than the weight of e.

2

4 Single-machine algorithms

4.1 Classical algorithms
The two most popular algorithms for minimum spanning trees on a single machine are Kruskal’s algorithm
and Prim’s algorithm [2]. Both of them have the same computational complexity and are relatively simple
to implement.

4.1.1 Kruskal’s algorithm

Algorithm 1 Kruskal’s algorithm
Require: All the edges in E are sorted in increasing order by weight
1: function Kruskal(G (V,E))
2: A = Φ
3: for i ∈ V do
4: MAKE-SET(i)
5: end for
6: for (u, v) in E do
7: if FIND-SET(u)6=FIND-SET(v) then
8: A = A ∪ (u, v)
9: UNION(u, v)

10: end if
11: end for
12: return A
13: end function

Basically, Kruskal’s algorithm begins with a sorted list of edges and adds each edge to the tree if it does
not form a cycle. By the cycle property, we know that if the weight of an edge is greater than all the other
edges in a cycle, then this edge cannot be part of the MST. Therefore, we only add edges which are part of
the MST.

Using a simple implementation of the disjoint-set data structure we can achieve a run-time of O (m log n).
If we use a more sophisticated disjoint-set data structure, then we can achieve a run-time of O (mα (m,n))
where α is the extremely slowly growing inverse of the Ackermann function. However, to achieve this bound,
we need to assume that the edges are already sorted or can be sorted in linear time.

4.1.2 Prim’s algorithm

Algorithm 2 Prim’s algorithm
1: function Prim(G (V,E))
2: A = V0
3: B = V
4: T = {}
5: while B 6= Φ do
6: Find smallest (u, v) ∈ E such that u ∈ A and v ∈ B
7: T = T + (u, v)
8: A = A+ v
9: B = B − v

10: end while
11: return T
12: end function

Prim’s algorithm finds the minimum weight edge leaving the current tree and appends this edge to the
tree. By the cut property, we know that the minimum weight edge leaving any cut is in the MST. Therefore,

3

we add only the edges that belong to the MST.
If we use a simple binary heap and a priority queue, the complexity of the algorithm is O (m log n).

However, if we use the more sophisticated Fibonacci heap, it can be shown that the run-time isO (m+ n log n)
which is asymptotically better for dense graphs.

4.2 Faster algorithms
The fastest non-randomized algorithm with known complexity is by Bernard Chazelle that runs inO (mα (m,n))
which for all practical purposes is linear time. However, this uses a soft heap and an approximate priority
queue and is difficult to implement. Karger, Klein & Tarjan found a linear time randomized algorithm
which uses only comparison of edge weights to find the MST. For integer edge weights, the current fastest
algorithm, developed by Fredman and Willard takes O (m+ n) time.

For the purposes of this project, we will only consider the classical algorithms owing to their ease of
implementation vis-à-vis the newer, faster algorithms.

5 Distributed Algorithms
We will look at three distributed algorithms. Two of them are based on Kruskal’s algorithm - edge partitioning
[3] and vertex partitioning [4], and the third, parallel Prim’s is based on Prim’s algorithm. The basic
assumption in all three algorithms is that the vertices of the graph fit in the memory of a single machine,
but the edges don’t.

First, we will look at the algorithms based on Kruskal’s algorithm. There is a common theme involved in
both algorithms. The following lemma helps in establishing the correctness of the algorithms in a distributed
setting.

Lemma 5.1 Any edge that does not belong to MST of a subgraph containing the edge does not belong to the
MST of the original graph.

Proof The fact that the edge does not belong to the MST of subgraph implies that there exists another
edge with less weight in the cut that separates the two vertices of the original edge. This holds true for the
original graph as well since we are just considering a subgraph. Hence, we edge will not feature in the MST
of the original graph.

In the following algorithms we find MSTs on different subgraphs and in the process, keep discarding edges
that don’t belong to the global MST. Once we reach a stage where we can store the remaining edges on one
machine, we use the single machine version of Kruskal’s algorithm to obtain the final MST.

5.1 Edge Partitioning
The edges do not fit in a memory of single machine and the edges on each machine form a subgraph. Local
MST is computed using the single machine version of Kruskal’s algorithm. Next, these remaining edges,
which are part of local MSTs are randomly split across the machines. Again, local MSTs are computed and
this process goes on until we can fit all the remaining edges on one machine. Once this is possible, we gather
them on one machine and use Kruskal’s algorithm to compute the final MST.

4

Algorithm 3 Edge partitioning algorithm
1: function EdgePartition(G (V,E))
2: η = Memory of each machine
3: e = E
4: while |e| > η do
5: l = Θ

(
|E|
η

)
6: Split e into e1, e2, e3 ... el using a universal hash function
7: Compute T ∗i = KRUSKAL(G (V, ei)) . In parallel
8: e = ∪iT ∗i
9: end while

10: A = KRUSKAL(G (V, e))
11: return A
12: end function

5.1.1 Analysis

We use the following notation for the analysis:

Number of vertices = n

Number of edges,m = n1+c

Memory of each machine = η = n1+ε

Number of machines required, l = nc−ε

Lemma 5.2 The algorithm terminates after d cεe iterations and returns the Minimum Spanning Tree.

Proof By lemma 5.1 we know that any edge that is not part of the MST on a subgraph of G is also not
part of the MST of G by the cycle property. Since the partition of edges is random, expected number of
edges on each machine is η. After one iteration, | ∪i Ti| ≤ l(n− 1) = O(n1+c−e). Thus the number of edges
reduce by a factor of nε.

For the next iteration, if you choose l such that it is just enough to fit all the remaining edges on l
machines, we can prove that the edges reduce by factor of nε again. Thus if we continue this process, after
d cεe−1 iterations the input is small enough to fit onto a single machine, and the overall algorithm terminates
after d cεe iterations.

One question that arises is the choice of the number of machines to use at each iteration. We will prove
that it is in fact better to use only as many machines as required to fit all the edges in memory as opposed
to using all the available machines.

Lemma 5.3 The optimal number of machines that should be used decreases for each iteration such that |ei|li
is constant and is equal to m

l . Here, ei are the number of edges left after (i − 1)th iteration and li is the
machines used at ith iteration.

Proof Let us assume that the algorithm terminates after t iterations. We know after t − 1 iterations, the
edges can fit in memory of single machine. Therefore, the total processing time can be written as:

m

l1
logn+

l1n

l2
logn+

l2n

l3
logn+ · · ·+ lt−2n

lt−1
logn+ lt−1nlogn

To find optimal values for li, we differentiate the above expression with respect to each li and set it to zero.

5

We thus obtain:

l21 = l2
m

n

l22 = l1l3

l23 = l2l4

...

l2i = li−1li+1

...
lt−2 = lt−3lt−1

l2t−1 = lt−2

Solving further and using ε = c
t :

l1 =
(m
n

) t−1
t

= nc−ε

l2 =
(m
n

) t−2
t

= nc−2ε

l3 =
(m
n

) t−3
t

= nc−3ε

...

li =
(m
n

) t−i
t

= nc−iε

...

lt−1 =
(m
n

) 1
t

= nc−(t−1)ε

∴
|ei|
li

=
n1+c−(i−1)ε

li
= n1+ε = constant

5.1.2 Processing times and communication costs

The processing time per iteration is sum of time taken to perform Kruskal’s on one machine and time taken
to partition the remaining edges for the next iteration. The total processing time can be written as:

dc
ε
e

 O
(m
l

log n
)

︸ ︷︷ ︸
Kruskal′s on each machine

+ O
(m
l

)
︸ ︷︷ ︸

random partioning of edges


The communication costs involve one all-to-all communication which is due to the shuffle performed at

the end of each iteration. As the number of edges decrease with subsequent iterations, the communication
cost also decreases. The total communication cost becomes a geometric progression:

m+
m

nε
+

m

n2ε
+

m

n3ε
+ · · · m

n(t−1)ε
=
n (nc − 1)

1− n−ε

5.1.3 Implementation

The random splitting of the edges is achieved by a map operation using scala random function. Then, using
groupByKey the edges with the same key are grouped on a single machine. Next, flatMap is employed
with Kruskal’s to obtain an RDD containing only the edges belonging to local MSTs.

6

5.2 Vertex partitioning
In this algorithm, instead of partitioning the edges, we partition the vertices. We fix a number k and
randomly split the vertices into k equally sized partitions, V = V1 ∪ V2 ∪ V3 · · · ∪ Vk and Vi ∩ Vj = ∅ for
i 6= j. Therefore |Vi| = n

k . If we consider each of these partitions and compute the MSTs on the subgraphs
induced by them we are ignoring the edges that go across the partitions. Instead, we consider pairs of these
partitions and compute local MSTs. For each pair i, j, let Ei,j ⊆ E be the set of edges induced by the
vertex set Vi ∪ Vj . That is, Ei,j = {(u, v) ∈ E|u, v ∈ Vi ∪ Vj}. Let the resulting subgraph be denoted by
Gi,j = (Vi ∪ Vj , Ei,j). So there are

(
k
2

)
such subgraphs. For each such Gi,j , compute unique MST Mi,j . Let

H be the graph consisting of all the edges present in some Mi,j : H = (V,∪i,jMi,j). Next, according to the
assumption, we can fit H on memory of single machine. Compute M , the MST of H which is the MST of
the original graph G.

Algorithm 4 Vertex partitioning algorithm
1: function VertexPartition(G (V,E))
2: Set k
3: Split V into V1, V2, V3 ... Vk using a universal hash function
4: Ei,j = {(u, v) ∈ E|u, v ∈ Vi ∪ Vj}
5: Gi,j = G (Vi ∪ Vj , Ei,j)
6: for i, j in k × k do
7: Mi,j = KRUSKAL(Gi,j) . In parallel
8: end for
9: H = G (V,∪i,jMi,j)

10: M = KRUSKAL(H)
11: return M
12: end function

5.2.1 Analysis

Theorem 5.4 The tree M computed by algorithm is the minimum spanning tree of G.

Proof The algorithm works by sparsifying the graph and then computing MST of the resulting subgraph.
By lemma 5.1, it is clear that we are not removing the edges which are part of MST of G. Hence the
resulting MST M is indeed the MST of G.

For this algorithm, we assume that we can fit Õ(n1+
c
2) on one machine, where m = n1+c. Õ is the same

as O, except we ignore the logarithmic terms.

Lemma 5.5 Let k = n
c
2 , then with high probability the size of every Ei,j is Õ(n1+

c
2).

Proof We bound the total number of edges in Ei,j by bounding the total degrees of the vertices. |Ei,j | ≤∑
v∈Vi deg(v) +

∑
v∈Vj deg(v). Only for the purpose of proof, partition the vertices into groups by their

degree. Let W1 be the set of vertices of degree atmost 2, W2, the set of vertices with degree 3 or 4, and
generally Wi =

{
v ∈ V : 2i−1 < deg(v) ≤ 2i

}
. Thus there are log n total groups.

Consider the number of vertices from group Wi that are mapped to part Vj . If the group has a small
number of elements, that is, |Wi| < 2n

c
2 log n, then

∑
v∈Vi deg(v) ≤ 2n1+

c
2 log n = Õ(n1+

c
2). If the group is

large, that is, |Wi| ≥ 2n
c
2 logn, following application of Chernoff bound says that the number of elements of

Wi mapped into the partition j, Wi ∩ Vj is O(logn) with probability at least 1− 1
n .

Let X = number of elements of Wi mapped into partition j. Then, using Chernoff bounds:

7

E[X] = O(log n)

P (X > (1 + δ) log n) ≤ e
−δ2 logn

3

P (X > (1 + δ) log n) ≤ 1

n
e
δ2

3

as δ → 0, P (X > log n) ≤ 1

n

Therefore ,P (X ≤ log n) ≥ 1− 1

n

Thus, with probability at least 1− logn
n :

∑
v∈Vj

deg(v) ≤
∑
i

∑
v∈Vj∩Wi

deg(v)

≤
∑
i

2n1+
c
2 log2n

≤ Õ(n1+
c
2)

Hence proved.

5.2.2 Processing times and communication costs

We use the following notation for the analysis:

Number of vertices = n

Number of edges,m = n1+c

Memory of each machine = n1+
c
2

Number of machines required, k = n
c
2

We showed that with high probability, number of edges on one machine is O(n1+
c
2) which is O(mk). The

number of vertices on each machine is O(nk). Also, we know that after one iteration we can fit remaining
O(n1+

c
2) edges on single machine. We perform Kruskal’s on this to obtain MST. Thus, the total processing

time is:
O
(m
k

log
n

k

)
︸ ︷︷ ︸

Kruskal′s on each machine

+O
(
n1+

c
2 log n

)︸ ︷︷ ︸
Final Kruskal′s

The communication cost involves one one-to-all broadcast where we broadcast the vertex partition to
all
(
k
2

)
machines. There is one all-to-all groupByKey because we have to gather edges with same key

on one machine. Lastly, there is one all-to-one communication for the last step where we collect all the
remaining edges to perform single machine kruskal’s. Thus, the total communication cost becomes:

O
(
nk2

)
+O (m) +O

(
n1+

c
2

)
For the communication time we assume the broadcast is done by the BitTorrent model. For the final

all-to-one collect, each machine sends n1−
c
2 data in expectation. Therefore, the total communication

time can be written as:
O (n log k) +O (m) +O

(
n1−

c
2

)
Note that we have assumed k = n

c
2 for the purposes of analysis. If we have fewer than n

c
2 machines, say

l machines, then the processing time just gets multiplied by the factor l
k and the communication time can

be rewritten trivially in terms of l.

8

5.2.3 Implementation

The vertices are split randomly using map operation with scala’s random number generator. It is then
broadcasted to all the machines. Next, we go through all the edges on a machine is figure out the pair
of partition Ei,j it belongs to. Using a flatMap, each edge is alloted the key corresponding to its pair of
partition. A groupByKey operation collects all the edges belonging to one partition on a single machine.
Then we apply Kruskal’s algorithm locally. Since an edge can belong to multiple pair of partitions, after
the first Kruskal’s we need to use distinct function to remove the duplicates. One more Kruskal’s on the
remaining edges gives us the final MST.

5.3 Parallel Prim’s
This algorithm is different from the two algorithm described above in that it works by building up an MST
from scratch rather than eliminating edges that do not belong to the MST. Again, the assumption is that
that the edges do not fit in the memory of a single machine but the vertices do. At the first step, we find the
smallest edge leaving every vertex. We add these edges to the MST and then at each subsequent iteration,
we find the smallest edges leaving each connected component and add them to the MST. The smallest
edges leaving each connected component can be found by finding the smallest edge leaving each connected
component on individual machines and then performing a reduce operation to get the smallest edge overall.

Algorithm 5 Parallel Prim’s Algorithm
1: function ParallelPrims(G (V,E))
2: A = DISJOINTSET()
3: for i in V do
4: T = {}
5: A.MAKE-SET(i)
6: end for
7: Broadcast A
8: Ê = List of minimum edges leaving each disjoint set . In parallel
9: while |Ê| > 0 do

10: for e in Ê do
11: A.UNION(u, v)
12: T = T + e
13: end for
14: Broadcast A
15: Ê = List of minimum edges leaving each disjoint set . In parallel
16: end while
17: return T
18: end function

5.3.1 Analysis

Lemma 5.6 The algorithm takes at most dlog2 ne iterations to complete.

Proof At each step, we find the smallest edge leaving each connected component. Therefore, by the hand-
shake lemma, the number of unique edges that we find at iteration i, is at least 1

2 ×zi where zi is the number
of connected components at the beginning of iteration i. Therefore, at the end of iteration i, there are at
most zi

2 connected components. If we had more than zi
2 unique edges, the number of connected components

at the end of the iteration will only be fewer.
At the beginning of the first iteration, each vertex is in its own connected component, =⇒ z1 = n.

Therefore, the number of unique edges added at the first iteration is at least n
2 . This means, that at the end

of the end of the first iteration, there are at most n
2 connected components.

9

Therefore, by induction, the number of connected components at the edge of iteration i is n
2i . When we

are left with just 1 connected component, we have found the MST. Hence, the total number of iterations
taken by the algorithm is dlog2 ne.

5.3.2 Processing times and communication costs

The processing time for each iteration consists of 3 parts,

• Time to find the smallest edge leaving each component component in each machine

• Time to perform the reduce operation to obtain the smallest edge

• Time to find the perform the union operations to merge connected components

If implemented efficiently using path-compression the cost of each operation in a disjoint-set data structure
is O(α (n)). Since this function is grows very slowly and is effectively a constant < 5 for all practical purposes,
we will assume that the disjoint set operations take a constant amount of time.

We have already shown that the number of connected components at step i is at most n
2i . The total

processing time of the reduce operations can be expressed as the sum of a geometric series,

nk

2
+
nk

4
+
nk

8
+ ...+

nk

2i
= O (nk)

The overall processing time for the union operations is the same as the processing time for the reduce
operations since we assume that disjoint set operations take a constant amount of time. Therefore, the total
processing time can be written as,

log n︸︷︷︸
iterations

× O
(m
k

)
︸ ︷︷ ︸

per iteration

+ O(nk)︸ ︷︷ ︸
Total cost of all the reduces

At each iteration, we have one one-to-all broadcast of the disjoint set data structure. This is done using
a BitTorrent-like broadcast. The size of the disjoint set data structure is O (n) at each iteration and it is
broadcast to k machines. Therefore, the communication cost for this is O (nk log n). Since, we are using a
BitTorrent-like broadcast, the communication time for this is O (n log k log n).

We also have one all-to-one reduce operation to find the smallest edges leaving each connected component.
Since the number of connected components at iteration i is at most n

2i , the communication cost for this is,

nk

2
+
nk

4
+
nk

8
+ ...+

nk

2i
= O (nk)

The communication for the reduce happens in parallel, therefore the communication time for this is,

n

2
+
n

4
+
n

8
+ ...+

n

2i
= O (n)

Therefore, the total communication cost is,

O (nk log n) +O (nk)

The total communication time is,

O (n log k log n) +O (n)

5.3.3 Implementation

We used a custom disjoint set class implemented in scala. However, to save computation and to avoid
writing custom serialization methods, we use a hashtable to store the disjoint set each vertex belongs to and
broadcast this hashtable. We then perform a map operation to find the minimum edges in each machine
and do a reduce operation to get the overall minimum edges. After this, we go through each edge in the
list of edges returned by the reduce and perform the union.

10

6 Theoretical comparison
The dominant terms in the processing and communication time for each of the 3 distributed algorithms is
listed below.

Edge
Partitioning

Vertex
Partitioning Parallel Prim’s

Processing Time O
(
m
εk log n

)
O
((

m

n
c
2

+ n1+
c
2

)
log n

)
O
(
m
k log n+ nk

)
Communication Time O

(
m 1−n−c

1−n−ε

)
O (m+ cn log n) O (n log k log n)

Recall that m = n1+c and the memory per machine is n1+ε.
We plot the dominant terms to study how they grow with respect to change in c. Here, for the purposes

for the plots, we set ε = c
5 .

0.00 0.05 0.10 0.15 0.20 0.25 0.30
c

0

1

2

3

4

5

6

Pr
oc

es
si

ng
 ti

m
e

1e9

Edge partitioning
Vertex partitioning
Parallel Prim's

Figure 2: Processing time vs c, for n = 1,000,000

11

0.00 0.05 0.10 0.15 0.20 0.25 0.30
c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
m

m
un

ic
at

io
n

Ti
m

e

1e8

Edge partitioning
Vertex partitioning
Parallel Prim's

Figure 3: Commmunication time vs c, for n = 1,000,000

We see that the processing time for the parallel Prim’s algorithm is smaller and grows much slower
than the processing time for edge partitioning and vertex partitioning. The communication time for parallel
Prim’s might be larger than the communication time for edge partitioning or vertex partitioning for sparse
graphs but as the density of the graph increases, parallel Prim’s does better in terms of both processing time
and communication time since the communication time is independent of the number of edges.

7 Experimental comparison

No.of
Vertices

No.of
Edges

Edge
Partitioning

Vertex
Partitioning Parallel Prim’s

web-Stanford 281903 2312497 791 s 316 s 92 s
web-Google 875713 5105039 7384 s 3733 s 229 s
web-BerkStan 685230 7600595 3670 s 1569 s 313 s
as-Skitter 1696415 11095298 > 7200 s > 3600 s 335 s
roadnet-PA 1088092 1541898 > 7200 s > 3600 s 394 s

Table 1: Graphs obtained from [5]

The experimental results are in line with the theoretical predictions. One anomaly we notice is that even
though the graph as-Skitter has more vertices and edges than roadnet-PA, the Parallel Prim’s runtime for
as-Skitter is smaller than the runtime for roadnet-PA. This is because the number of iterations Parallel
Prim’s takes to run depends on the structure of the graph. The analysis assumes the worst case of dlog2 ne
iterations but in practice it takes fewer steps depending on the structure of the graph.

12

8 Conclusions
• Three distributed algorithms for computing MST of a given graph were presented and compared based

on processing time and communication time.

• The parallel Prim’s algorithm’s communication time is independent of the number of edges.

• For sparse graphs, the communication time for vertex partitioning algorithm is less than that of parallel
Prim’s while the processing time is better for Prim’s algorithm. Hence in some cases, vertex partioning
algorithm might perform better and it is worth consideration.

• For dense graphs, parallel Prim’s algorithms wins in both, communication time and processing time.

• Both vertex partitioning and parallel Prim’s outperform the edge partitioning algorithm in all cases.

9 Future work
• Since all the above algorithms were tested on 4 cores at the most, we did not study how well the

algorithms scale in a practical setting. Depending on how fast the CPUs are, and how much network
bandwidth is available, there could be variations in the performance of the algorithms.

• All the runtimes presented above were in expectation or sometimes, worst case. In reality, they depend
on the structure of the graph and there can be large variations depending on the structure of the graph
as we saw with as-Skitter and roadnet-PA. It would be worthwhile to study the performance of the
algorithms on different types of graphs.

• There might be ways to further improve the design of the algorithms. For example, one might be able
to think of a clever partitioning scheme for edge partitioning and vertex partitioning. Or, for parallel
Prim’s, one might be able to think of a way of caching the smallest edges leaving each connected
component eliminating some duplication in work done.

10 Acknowledgements
We thank Reza Zadeh and Dietrich Lawson for helping us in both theoretical and computational aspects of
this project.

References
[1] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: cluster

computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, pages 10–10, 2010.

[2] Reza Zadeh. Discrete mathematics and algorithms. http://web.stanford.edu/class/cme305/Notes/
2.pdf.

[3] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method for
solving graph problems in mapreduce. In Proceedings of the twenty-third annual ACM symposium on
Parallelism in algorithms and architectures, pages 85–94. ACM, 2011.

[4] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapreduce. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 938–948.
Society for Industrial and Applied Mathematics, 2010.

[5] Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and graph mining library in
C++. http://snap.stanford.edu/snap, June 2014.

13

http://web.stanford.edu/class/cme305/Notes/2.pdf
http://web.stanford.edu/class/cme305/Notes/2.pdf
http://snap.stanford.edu/snap

	Introduction
	Applications
	Properties
	Cut property
	Cycle property

	Single-machine algorithms
	Classical algorithms
	Kruskal's algorithm
	Prim's algorithm

	Faster algorithms

	Distributed Algorithms
	Edge Partitioning
	Analysis
	Processing times and communication costs
	Implementation

	Vertex partitioning
	Analysis
	Processing times and communication costs
	Implementation

	Parallel Prim's
	Analysis
	Processing times and communication costs
	Implementation

	Theoretical comparison
	Experimental comparison
	Conclusions
	Future work
	Acknowledgements

