Data Parallel EM for estimating the Genome Relative
Abundance (GRA) in Metagenomic Samples

Orren Karniol-Tambour



Setting: We've taken a sample from a microbial community - e.g. water from a pond, blood sample from a sick human.
The sample contains traces of the DNA and RNA of viruses and bacteria living in the pond/body.

:::::
Phosphate

ccccccccc

Deoxyribonucleic acid Ribonucleic acid
(RNA)

We perform shotgun sequencing on the sample and get a series of genomic reads - i.e. strings of nucleotide bases:

ACGTCGATCGCTAGCCGCATCAGCAAACAACACGCTACAGCCT

So we have:
- a set of known reference genomes (long strings).
- a set of reads (shorter strings), along with the number of high quality ‘hits’ from each read to each genome

(where a ‘hit’ reflects edit distance between the read string and substring of a reference genome below some threshold)

Our goal is to estimate the relative abundance of all known bacteria and viruses
in the environment we sampled from - e.g. figure out why our patient is sick



We assume our reads are drawn iid from a mixture of genomes - so we can view the Genome Relative Abundance
(GRA) as a finite mixture we need to estimate and use EM to solve:

Repeat until convergence: {

(E-step) For each i, j, set

W= p® =j|x9;¢)

(M-step) Update the parameters:

EM - quick review
-iterative algorithm for finding maximum likelihood

estimate of parameters when model depends on latent
variables

-‘missing’ Z data matrix, where Zij tells us whether
sample i came from source j

-pick a guess for parameters, estimate posterior
distribution of the Zs given data X and current guess for
parameters

-update parameters based on current guess for Zs

-improves on each iteration, converges to local optimum



EM applied to GRA estimation:

Key insight: we can approximate the likelihood of the data as # hits from read i on

genome j, normalized by length of genome j (since hits on shorter genomes are
more informative)

E-step
Where:
1Z.=1:G) a® (S; /L) a? e
AL np(r’ |2 LA/ — 7 r; is the i'th read
v ki_ll pri| Zy=1;G) kZ_Zl(S,-k /L) n Sij is the number of ‘hits’ from read i to genome |
B B L; is the length of genome j
7. is a mixing parameter that describes the contribution
M-step J -
of the j'th genome to the mixture, and 3 = 1
m j=1
J_EJ(_t+1) _ nl1 3 7@

Xia et al., PLoS One 2011
Each iteration costs O(mn) time, where m is the number of reads, n is number of genomes

In practice, m is very large (millions) and getting larger as sequencing gets exponentially cheaper
and ‘deep’ sequencing becomes common

n is manageable (thousands) and will grow far more slowly



genomes

reads

RDD: (Ri, ((Gj,1), (Gj, 1),...))

L
1
I
I

~
~
~
~
~.y
.- 7T
Compute Zi: K~ I
"\ /7
WYy
RN ./ .
RPN
v o*
7 NN,
Compute Zi: k- - Xj'--el TTj
\‘ /7 \ /’
M X
AR
. ‘/ N
.{/ \.\‘
Compute Zi: Foo._ W
¥ A
I
I
1
T P
E-step M-step

E-step

Z(t) ~

D WO AT
k=1

()
S; /L) m

M-step
m
(+1) _ 1 0)
P
=1
----- >
broadcast

(one to many)

collect
(many to one)

S

map
(none)

—_ = >

reduceByKey
(many to many)



E-step
map(i, Si:) :
n = length(Si:)
sum =0
forjinn:
nnZij = (Sij / Lj) Pi(j)
sum += nnZijj
forjinn:
nnZij = (Sij / Lj) Pi(j)
Zij = nnZij / sum

emit(j, Zij)
M-step
reduce(j, Z:j) :

Pi(j) = sum(Z:j) / m
emit(j, Pi(j))

Single Machine - Cost of Single Iteration

O(mn) time

Data Parallel EM - Cost of Single Iteration

Time
E-step: O(mn/B)
M-step: O(n/B)

Communication
broadcast: O(nB)
shuffle: O(nB)

(with combiners)

Total: O(mn/B) time

embarrassingly parallel!

Total: O(nB)



// get number of genomes
val numGenomes = lengths.value.size

// for now let's just make pi uniform.
var currentPi = lengths.value.keys.toList.map(r => (r, 1 / numGenomes.toDouble)).toMap
var newPi = currentPi

// create empty list to account for genomes we haven't seen
val emptyPi = lengths.value.keys.toList.map(r => (r.toInt, 0.0)).toList

// paramg

val maxIterations = 1000

val convergenceTol = .000001
var iteration = @

var maxdiff = 100

while (iteration <= maxIterations && maxdiff > convergenceTol) {
// broadcast current pi Map to workers
val pi = sc.broadcast(currentPi)

// helper function, gets pi for a genome by key
val getPi = (x: Int) => pi.value.get(x.toString).get.toDouble

// compute Zij
val computeZ = (r: (String, List[(Int, Double)])) => {

// non-normalized Zij
val znn = r._2.map(x => (x._1, x._2 * getPi(x._1.toInt)))

// sum of Zi: row
val znnsum = znn.map(x => X._2).sum

// normalized Zij
val zn = znn.map(x => (x._1, x._2 / znnsum))

// output (read-i, List((G1, zil1), (G2, zi2), ...))
(r._1, zn)
}
// map iterator vals to List, and compute Zij's -- see format above

val zmatrix = smatrix.mapValues(_.toList).map{r => computez(r)}

// compute new estimate of pi
val piNew = zmatrix.flatMap(x => x._2) // flatmap Z to get (Gj, Zij) tuples

// reduce to sum, map to divide, getting (Gj, PIj) tuples
// this takes an avg over the Z:j column
.reduceByKey(_ + _).map(x => (x._1, X._2/ numReads))

// collect to driver as list
.collect().toList

// merge new and empty pi lists to get new pi
newPi = (emptyPi ++ piNew).groupBy(_._1)
.map(kv => (kv._1.toString, kv._2.map(_._2).sum))

/] === Calculate Residual ——————-

// take max abs pairwise diff of pi new-old, equivalent to GRAMMy's maxd() c++ function
val diffPi = (newPi ++ currentPi).groupBy(_._1)

.map(kv => (kv._1, kv._2.map(_._2)

.reduce(_ - _))).toList
var maxdiff = scala.math.abs(diffPi.maxBy(x => scala.math.abs(x._2))._2)

// assign new pi to current
currentPi = newPi

iteration += 1



