
Data Parallel EM for estimating the Genome Relative

Abundance (GRA) in Metagenomic Samples

Orren Karniol-Tambour

Symbolic Systems Program

CME 323 Final Project, Spring 2015

1.1 Introduction

Metagenomic analysis based on shotgun sequencing data provides a critical avenue for learning

about the composition of microbial communities found in environmental or human samples. In

the context of medicine, accurate estimation of the microbial community composition found in

human samples can be critical to understanding the role viruses and bacteria play in the human

body, as well as to diagnosing patients. Many prevalent methods for estimation of genome relative

abundance (GRA) rely on direct summarization of alignment results and often result in biased or

unstable estimates [1]. Machine learning and statistical methods designed for accurate and efficient

estimation offer an alternative to such methods.

Xia et al. [1] proposed GRAMMy, a model for estimating GRA using the EM algorithm for

maximum likelihood estimation. The GRA is modelled as a finite mixture model from which reads

are drawn, and the role of the algorithm is to estimate this mixture. The model achieves very

high accuracy estimates. One of the limitations of the GRAMMy model, however, is that its

computational implementation requires serial computation performed on a single machine - which

for rapidly growing read sizes is a significant limitation.

Here we provide a brief overview of the biological setting of the estimation problem, overview

the EM algorithm used, and show how it can be parallelized.

1.2 Setting

In our setting for the problem, we assume weve taken a sample from a microbial community - e.g.

water from a pond, or a blood sample from a sick human. The sample contains traces of the DNA

and RNA of viruses and bacteria living in the pond/body.

DNA is the building block of life, and encodes the genetic information of cells that governs how

they reproduce and perform functions. RNA is made of DNA and provides the instructions for

building proteins. Bacteria and viruses store their genetic information in DNA and/or RNA, so

if we are sampling from an enviornment in which they are present, we should find traces of their

DNA and RNA.

1



Figure 1: DNA and RNA.

DNA is made up of four nucleotides: G, A, T, C. Similarly, RNA is made up of the bases G, A,

U, C. Thus every genome can be viewed as a long string with only 4 unique characters. When we

gather DNA samples, they are like unlabelled strings, and we need to sequence the DNA fragments

in order to identify the characters composing each string.

Shotgun sequencing is a procedure in which we clone the DNA fragments, and then randomly

sheer them into short segments (this is like blowing up the segments randomly the way a shotgun

would - hence the name). This allows us to identify the characters in each shorter segment, called

a read, which is just a string of nucleotide bases:

Figure 2: A read: string of nucleotide bases.

So in our setting, we have (1) a set of known reference genomes (long strings), (2) a set of reads

(shorter strings), along with the number of high quality hits from each read to each genome. We

consider that a hit reflects an edit distance between the read string and a substring of a reference

genome below some threshold, indicating the read may have come from that genome. Our goal is to

estimate the relative abundance of all known bacteria and viruses in the environment we sampled

from - e.g. figure out wht organisms live in the pond, or why our patient is sick.

1.3 Estimation of the Genome Relative Abundance

We assume our reads are drawn iid from a mixture of genomes - so we can view the Genome Relative

Abundance (GRA) as a finite mixture we need to estimate and use EM for this purpose.

We won’t develop EM here, but as a quick review, EM is an iterative algorithm for finding a

maximum likelihood estimate of parameters when a model depends on latent variables. In EM,

we are trying to estimate the density of a mixture from which we have sampled, which would be

much easier if we knew which sample came from which source - i.e. if we had access to a missing Z

2



Algorithm 1 Expectation Maximization (EM) for Finite Mixture Models

while diff ≥ ε do
E-Step:

for each i, j do

W
(i)
j = p(z(i) = j|x(i);φ)

end for

M-Step:

for each j do

φj = 1
m

∑m
i=1W

(i)
j

end for

end while

data matrix, where Zij tells us whether sample i came from source j. Since we don’t have access

to Z, we pick a guess for the parameters φ, and estimate the posterior distribution of Z given the

samples X and our current guess for φ. This is the E-step. We then update φ based on our current

guess for Z, and iterate till convergence. We won’t prove this here, but EM has the nice property

that it is guaranteed to improve our estimate on each iteration, and converges to a local optimum.

1.3.1 EM for Estimating GRA

The trick in applying EM to our problem is to figure out how to model the likelihood of Z so we

can estimate its posterior distribution.

While we don’t know which read came from which genome, we do have the set of hits from each

read to each genome, and we can use this as our proxy. So, we can estimate Z as:

Z
(t)
ij =

p(ri|Zij=1;G)π
(t)
j∑n

k=1 p(ri|Zik=1;G)π
(t)
k

≈ (Sij/lj)π
(t)
j∑n

k=1(Sik/lk)π
(t)
k

Where ri is the i’th read, Sij is the number of hits from read i to genome j, lj is the length of

genome j, and πj is a mixing parameter that describes the contribution of the j’th genome to the

mixture. Note that
∑m

j=1 πj = 1.

This gives us our E-step. For our M-step, we just have to take an average over the columns of

Z. The EM algorithm for GRA is presented below.

Each EM iteration costs O(mn) time, where m is the number of reads, and n is number of

genomes. This is because both our E and M steps require us to look at every read and genome,

and we run the algorithm sequentially. In practice, m is very large (millions) and getting larger as

sequencing gets exponentially cheaper and deep sequencing becomes common. On the other hand,

n is manageable (thousands) and will grow far more slowly. So we’d like to find a way to parallelize

the algorithm across reads.

3



Algorithm 2 EM for GRA Estimation

while diff ≥ ε do
E-Step:

for each i, j do

Z
(t)
ij =

(Sij/lj)π
(t)
j∑n

k=1(Sik/lk)π
(t)
k

end for

M-Step:

for each j do

π
(t+1)
j = 1

m

∑m
i=1 Z

(t)
ij

end for

end while

1.3.2 Data Parallel EM for GRA

We assume that m does not fit on a single machine, but n does. To parallize EM across reads, we

represent our S matrix as an RDD with key ri and value List((Gj, 1), (Gj, 1), ...) for each genome

j read i maps to. In practice the rows of S are extremely sparse, and a single read maps to only

a handful of genomes, so this is an efficient representation. The vector containing the length of all

the genomes, l, is of size n, so it can be broadcast to the mappers. The same is true for π. The

algorithm for Data Parallel EM for GRA is presented below.

Algorithm 3 Data Parallel EM for GRA Estimation

procedure map(i, Si:)

n = length(Si:)

sum = 0)

for i in n do

nnZij = (Sij/lj)πj
sum = sum + nnZij

end for

for i in n do

nnZij = (Sij/lj)πj
Zij = nnZij/sum

emit(j, Zij)

end for

end procedure

procedure reduce(j, Z:j)

πj = 1
m

∑m
i=1 Zij

emit(j, πj)

end procedure

4



Figure 3: Diagram of Data Parallel EM for GRA.

Figure 3 shows a schematic of the flow of the algorithm, including the types of communication

taking place over the network at each stage.

Since we run the algorithm in parallel over the reads, our E step takes O(mn/B) time. With

combiners, every mapper outputs only n (genome, value) tuples, so our M-step takes only O(n/B)

time. In total, each EM iteration takes O(mn/B), so this algorithm is embarrassingly parallel! In

terms of communication, the first iteration requires us to broadcast l and π to each mapper, and

each subsequent iteration requires us to broadcast π. Since both l and π are of size n and we have

B mappers, this is O(nB). As we note above, with combiners, each of our B mappers outputs only

n tuples, so shuffle size is O(nB), and total communication is thus also O(nB).

References

[1] Xia, L. C., Cram, J. A., Chen, T., Fuhrman, J. A., Sun, F. Accurate Genome Relative

Abundance Estimation Based on Shotgun Metagenomic Reads. PloS One, 6(12), e27992,

(2011).

5


	1.1 Introduction
	1.2 Setting
	1.3 Estimation of the Genome Relative Abundance
	1.3.1 EM for Estimating GRA
	1.3.2 Data Parallel EM for GRA


