Matrix Factorization

Reza Zadeh

€ databricks

S,c>cn"l’<\Z

@Reza_Zadeh | http://reza-zadeh.com

Outline

Matrix Factorization (collaborative filtering)
Sparse subspace embedding

Stochastic Gradient Descent (on the board)

Collaborative Filtering

Goal: predict users’ movie ratings based on
past ratings of other movies

(12 .”I

Users

>~ 01 v e
LU NETONETONELY)
v U1 W -V
SO JERL O IR U 5 I o
SONETORETO RN U,
N VD VU -V
V= W W

€ Movies >

Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK

-0

Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users

» Repeat until converged

Alternating Least Squares

-0

1. Start with random A, B;

2. Solve for A, to minimize ||R - A,B. ||
3. Solve for B, to minimize ||R - A,B,'||
4, Repeat until convergence

Optimization problem

f(3)

User Factors (U)
(W) s401084 3IAO

Movies II

lterate:

fli] = arg min

S (rig —wTf 1) + AlJw|[3

jENDrs(2)

Attempt 1: Broadcast Al

Master

ITTVIN
e — ™

Workers

Master loads (small)
data file and initializes
models.

Master broadcasts
data and initial
models.

At each iteration,
updated models are
broadcast again.

Works OK for small
data.

Lots of
communication
overhead - doesn't
scale well.

Attempt 2: Data Parallel

‘ S
SRS ™

Master

1= r
! tings
w
! Fﬁngs

1=
! Fmgs
=i F
! tings

W(;rlmers

Workers load data

Master broadcasts
initial models

At each iteration,
updated models are
broadcast again

Much better scaling

Works on large
datasets

Works well for smaller
models. (low K)

Attempt 3: Fully Parallel

® \Workers load data

® Models are
instantiated at
workers.

® At each iteration,
models are shared via
join between workers.

® Much better
scalability.

® Works on large
datasets

Matel Zaharia,

AI_S Oon Spark Joey Gonzales,

Virginia Smith

-0

Cache 2 copies of R in memory, one
partitioned by rows and one by columns

Keep A & B partitioned in corresponding way
Operate on blocks to lower communication

ALS Results

Total Time (s)

5000

4000

3000

2000

1000

0

4208

“ Mahout / Hadoop
w Spark (Scala)
GraphlLab (C++)

Sparse subspace embedding

Sparse Subspace Embedding

(® has one nonzero
per column)

A = # RDD of vectors, one per row
s = 10000 # embedding dimension
S = A.map(lambda row: (randint(l, s), gauss(@, 1) * row))) \

.reduceByKey(lambda a, b: a + b) \
.values()

[Clarkson and Woodruff, STOC ’13]

Stochastic Gradient Descent (on the board, in
the notes)

