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Outline

Matrix Factorization (collaborative filtering)
Sparse subspace embedding

Stochastic Gradient Descent (on the board)



Collaborative Filtering

Goal: predict users’ movie ratings based on
past ratings of other movies
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Model and Algorithm

Model R as product of user and movie feature
matrices A and B of size UxK and MxK
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Alternating Least Squares (ALS)
» Start with random A & B
» Optimize user vectors (A) based on movies
» Optimize movie vectors (B) based on users

» Repeat until converged




Alternating Least Squares
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1. Start with random A, B;

2. Solve for A, to minimize ||R - A,B. ||
3. Solve for B, to minimize ||R - A,B,'||
4, Repeat until convergence



Optimization problem
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Attempt 1: Broadcast Al

Master
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Workers

Master loads (small)
data file and initializes
models.

Master broadcasts
data and initial
models.

At each iteration,
updated models are
broadcast again.

Works OK for small
data.

Lots of
communication
overhead - doesn't
scale well.



Attempt 2: Data Parallel
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Workers load data

Master broadcasts
initial models

At each iteration,
updated models are
broadcast again

Much better scaling

Works on large
datasets

Works well for smaller
models. (low K)



Attempt 3: Fully Parallel

® \Workers load data

® Models are
instantiated at
workers.

® At each iteration,
models are shared via
join between workers.

® Much better
scalability.

® Works on large
datasets




Matel Zaharia,
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Cache 2 copies of R in memory, one
partitioned by rows and one by columns

Keep A & B partitioned in corresponding way
Operate on blocks to lower communication



ALS Results
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Sparse subspace embedding



Sparse Subspace Embedding

(® has one nonzero
per column)

A = # RDD of vectors, one per row
s = 10000 # embedding dimension
S = A.map(lambda row: (randint(l, s), gauss(@, 1) * row))) \

.reduceByKey(lambda a, b: a + b) \
.values()

[Clarkson and Woodruff, STOC ’13]



Stochastic Gradient Descent (on the board, in
the notes)



