
CME 323: Distributed Algorithms and Optimization, Spring 2016

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 5, 4/11/2016. Scribed by Henry Ehrenberg, Sagar Vare, Andreas Santucci.

Lecture contents

1. QuickSort

2. Parallel algorithm for minimum spanning trees (Boruvka)

3. Parallel connected components (random mates)

1 QuickSort

First, we’ll finish the analysis of QuickSort. The algorithm is as follows.

Algorithm 1: QuickSort

Input: An array A

Output: Sorted A

1 p← element of A chosen uniformly at random

2 L← [a|a ∈ A s.t. a < p] // Implicitly: BL ← 1{ai < p}ni=1, prefixSum(Bl),

3 R← [a|a ∈ A s.t. a > p] // which requires Θ(n) work and O(log n) depth.

4 return [QuickSort(L), p, QuickSort(R)]

1.1 Analysis on Memory Management

Recall that in Lecture 4, we designed an algorithm to construct L and R in O(n) work and O(log n)

depth. Since we know the algorithm used to construct L and R (which is the main work required

of QuickSort), let us take this opportunity to take a closer look at memory management during

the algorithm.

Selecting a pivot uniformly at random We denote the size our input array A by n. To be

precise, we can perform step 1 in Θ(log n) work and O(1) depth. That is, to generate a number

uniformly from the set {1, 2, . . . , n} we can assign log n processors to independently flip a bit “on”

with probability 1/2. The resulting bit-sequence can be interpreted as a log2 representation of a

number from {1, . . . , n}.

1

http://stanford.edu/~rezab/dao

Allocating storage for L and R Start by making a call to the OS to allocate an array of n

elements; this requires O(1) work and depth, since we do not require the elements to be initialized.

We compare each element in the array with the pivot, p, and write a 1 to the corresponding element

if the element belongs in L (i.e. it’s smaller) and a 0 otherwise. This requires Θ(n) work but can

be done in parallel, i.e. O(1) depth. We are left with an array of 1’s and 0’s indicating whether an

element belongs in L or not, call it 1L,

1L = 1{a ∈ A s.t. a < p}.

We then apply PrefixSum on the indicator array 1L, which requires O(n) work and O(log n)

depth. Then, we may examine the value of the last element in the output array from prefixSum

to learn the size of L. Looking up the last element in array 1L requires O(1) work and depth. We

can further allocate a new array for L in constant time and depth. Since we know |L| and we know

n, we also know |R| = n − |L|; computing |R| and allocating corresponding storage requires O(1)

work and depth.

Thus, allocating space for L and R requires O(n) work and O(log n) depth.

Filling L and R Now, we use n processors, assigning each to exactly one element in our input

array A, and in parallel we perform the following steps. Each processor 1, 2, . . . , n is assigned to its

corresponding entry in A. Suppose we fix attention to the kth processor, which is responsible for

assigning the kth entry in A to its appropriate location in either L or R. We first examine 1L[k]

to determine whether the element belongs in L or R. In addition, examine the corresponding entry

in prefixSum output, denote this value by i = prefixSum(1L)[k]. If the kth entry of A belongs

in L, then it may be written to the position i in L immediately, by definition of how what our

prefixSum output on 1L means. If the kth entry instead belongs in R, then realize that index i

tells us that exactly i entries “before” element k belong in L. Hence exactly k − i elements belong

in array R before element A[k]. Hence we know exactly where to write the kth element to R if it

belongs there.

Clearly, the process of filling L and R requires O(n) work and O(1) depth.

Work and Depth per Iteration Thus we may say that steps 1,2,3 of our algorithm require

O(n) work and O(log n) depth.1 The last step of the algorithm requires recursive calls to Quicksort

and a concatenation of several elements. Realize that if we are clever about how we allocate the

memory for our arrays to begin with, this “concatenation” (or lack thereof) can be performed

without extra work or depth.2

1It may be tempting to think that we can get away with not calculating a prefixSum on 1L in order to determine

the sizes of L and R, and instead pass this indicator array 1L to our recursive call. We might think that we can then

avoid incurring logn depth. However, realize that then when we pass 1L to our recursive call, it would still be of size

n, hence we would not be decreasing the size of our problem with each recursive call. This would result in quite a

poor algorithm.
2For details, see lecture 4 notes, specifically the section on “Parallel Algorithms and (Seemingly) Trivial Opera-

tions”.

2

1.2 Total Expected Work

Now we analyze the total expected work of QuickSort.3 We assume all our input elements are

unique.4 On a very high level, to compute the work, note that the work done summed across each

level of our computational DAG is n. There are log4/3 n levels in our DAG, hence expected work

given by

E[T1] = E[# levels] · E[work per level] = O(n log n)

Details We define the random indicator variable Xij to be one if the algorithm does compare the

ith smallest and the jth smallest elements of input array A during the course of its sorting routine,

and zero otherwise. Let X denote the total number of comparisons made by our algorithm. Then,

we have that

X =
n−1∑
i=1

n∑
j=i+1

Xij .

Number of Comparisons We take a moment to realize why we sum over
(
n
2

)
elements instead

of n2: the only time in our QuickSort algorithm whereby we make a comparison of two elements

is when we construct L and R. In doing so, we compare each element in the array to a fixed pivot

of p, after which all elements in L less than p and all elements in R greater than p. Realize that

pivot p is never compared to elements in L and R for the remainder of the algorithm. Hence each

of the
(
n
2

)
pairings are considered at most once by our QuickSort algorithm.

Expected Number of Comparisons Realize that expectation operator E is monotone, hence

E[X] ≤ E

n−1∑
i=1

n∑
j=i+1

Xij

 =
n−1∑
i=1

n∑
j=i+1

E[Xij],

where the equality follows from linearity of expectation. Since Xij an indicator random variable,

E[Xij] = 0 · Pr(Xij = 0) + 1 · Pr(Xij = 1) = Pr(Xij).

Consider any particular Xij for i < j (i.e. one of interest). Denote the ith smallest element of

input array A by rank−1A (i) for i = 1, 2, . . . , n. For any one call to QuickSort, there are exactly

three cases to consider, depending on how the value of the pivot compares with A[i] and A[j].

• Case 1: p ∈ {rank−1
A (i), rank−1

A (j)} In selecting a number from {1, 2, . . . , n} uniformly

at random, we happen to select an element as pivot from A which is either the ith smallest

element in A or the jth smallest element in A. In this case, Xij = 1 by definition.

3We follow the analysis from CMU very closely.[3]
4If there are duplicate elements in our input A, then this only cuts down the amount of work required. As the

algorithm is written, we look for strict inequality when constructing L and R. If we ever select one of the duplicated

elements as a pivot, its duplicates values are not included in recursive calls hence the size of our sub-problems

decreases even more than if all elements were unique.

3

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf

• Case 2: rank−1
A (i) < p < rank−1

A (j): The value of the pivot element selected lies between

the ith smallest element and the jth smallest element. Since i < j, element i placed in L

and j placed in R and Xij = 0, since the elements will never be compared.

• Case 3: p < rank−1
A (i) or p > rank−1

A (j): The value of the pivot is either less than the

ith smallest element in A or greater than the jth smallest, in which case either both elements

placed into R or both placed into L respectively. Hence Xij may still be “flipped on” in

another recursive call to Quicksort.

It’s possible that on any given round of our algorithm, we end up falling into case 3. Ignore

this for now. In doing so, we implicitly condition on falling into case 1 or 2, i.e. we condition on

our rank p being chosen so that it lies in the set of values {rank−1A (i), rank−1A (i+1), . . . , rank−1A (j)}.
Then, the probability that Xij = 1 (ignoring case 3) is exactly

2/(j − i+ 1),

Thus,

E[X] =
n−1∑
i=1

n∑
j=i+1

E[Xij] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n−1∑
i=1

2

n∑
j=i+1

1

j − i+ 1

=
n−1∑
i=1

2

(
1

2
+

1

3
+ . . .+

1

n− i+ 1

)
.

Now, note that Hn =
∑n

i=1
1
i is the Harmonic Number. We note that

∑n
i=1

1
i <

∫ n
1

1
xdx, from

Calculus,5 and further that
∫ n
1

1
xdx = lnn. Hence we see that

E[X] =
n−1∑
i=1

2
n−i+1∑
j=2

1

j
< 2nHn = O(n log n).

So, in expectation, the number of comparisons (i.e. the work performed by our algorithm) is

O(n log n).

1.3 Total Expected Depth

Recall our analysis in Lecture 4 for QuickSelect. In a similar fashion, we may consider the number

of recursive calls made to our algorithm when our input array is of size(
3

4

)k+1

n < |A| <
(

3

4

)k

n,

and denote this quantity by Xk. We saw that if we select a pivot in the right way, we can reduce

input size by 3/4.

We saw that E[Xk] = 2, since it’s a geometric random variable (i.e., we continually make calls

to QuickSort until we successfully reduce our input size by at least 3/4. In expectation, this takes

4

https://en.wikipedia.org/wiki/Harmonic_number

If we select any of these elements in red as a pivot,

where we visualize the elements being in sorted or-

der, then both L and R will have size ≤ 3
4n.

1
4

3
4

Figure 1: Ideal Pivot Selection

QuickSort(A)

QuickSort(L) QuickSort(R)

...
...

...
...

O(log n) levels

Figure 2: Computational DAG for QuickSort

two trials. Hence in expectation we require 2c log4/3 n recursive calls to be made before we reach a

base case.

Here, we see that in our computational DAG, we have O(log4/3 n) levels. At each level, our

algorithm requires O(log n) depth since the bottleneck is in constructing L and R and specifically

in the call to Prefix Sum. Hence in expectation our total depth given by the expected number of

levels times the expected depth per level: E[D(n)] = O(log2 n).

1.4 A Shortcut for Bounding Total Expected Work

Examine figure 1.3, the computational DAG for our QuickSort algorithm. We are initially handed

an input array of size n elements. At each level of our DAG, the n elements are split into chunks

across nodes in that level. Specifically, we’re not sure exactly how many elements from A are

allocated to L, nor do we know exactly how many elements from A are allocated to R. But we

definitely know that there are always n elements we deal with on each level. The most work-

intensive operation we perform in each call to QuickSort is in constructing L and R, which requires

Θ(n) work. Hence, for a given level in our computational DAG, we perform exactly Θ(n) work

total after summing across work in all nodes.

So, in this very specialized analysis, we have that expected work is

5This can easily be seen by comparing a Lower Darboux Sum with a Riemann Integral.

5

E[W] = (# nodes per level)× (# levels) = O(n log n).

Since there are O(log n) levels in our tree in expectation, we perform O(n log n) work in expec-

tation.

2 Minimum spanning tree algorithms

Now we’ll shift our focus to parallel graph algorithms, beginning with minimum spanning trees.

In the following sections, we’ll denote our connected and undirected graph by G = (V,E,w). The

size of the vertex set |V | = n, the size of the edge set |E| = m, and we assume that the weights

w : E → R are distinct for convenience.6

A tree is an undirected graph G which satisfies any two of the three following statements, such

a graph also then satisfies the other property as well.7

1. G connected

2. G has no cycles

3. G has exactly n− 1 edges

The minimum spanning tree (MST) ofG is T ∗ = (V,ET , w) such that
∑

e∈ET∗
w(e) ≤

∑
e∈ET

w(e)

for any other spanning tree T . Under the assumptions on G, the MST T ∗ is unique and the previous

inequality is strict.

2.1 Sequential approaches and Kruskal’s algorithm

Sequential algorithms for finding the MST are nice and easy because greedy algorithms work well

for this problem. The two clear approaches are Prim’s algorithm and Kruskal’s algorithm. Here,

we’ll focus on Kruskal’s algorithm, given in Algorithm 2.

Kruskal’s algorithm is based on the cut property (or red rule), which we now prove.

Theorem 2.1 (Cut-Property, Red-Rule) Let G(V,E,w) be an undirected and connected graph.

Then the edge with minimum weight leaving any cut S ⊂ V is in the MST of G.

6If the edge weights are not distinct, then we may simply perturb each edge weight by a small random factor

ε > 0, where ε < 1/n3. We no longer have to break ties in our algorithm and at the end, we may simply round back

the edge weights to recover the weight of the minimum spanning tree.
7To see that (1, 2) =⇒ 3, use induction on the number of nodes n. The base case is trivial. For the inductive

step, realize that any acyclic connected graph G must have a leaf v where d(v) = 1. Since G − v also acyclic and

connected, by the induction hypothesis, e(G′) = n − 2. Since d(v) = 1, we have that e(G) = n − 1. To see that

(1, 3) =⇒ 2, suppose toward contradiction G has a cycle. To see that (2, 3) =⇒ 1, consider the case that G split

into k components. Since G has no cycles, each component Gi both connected and acyclic, hence each is a tree. So

total number of edges in G given by
∑

i(n(Gi)− 1) = n− k. But since |E| = n− 1, k = 1.

6

Algorithm 2: Kruskal’s MST algorithm

Input: G = (V,E,w), an undirected and connected graph

Result: T ∗, the MST of G

1 Sort E in increasing order by edge weight T ← ∅
2 while T not yet a spanning tree do

3 e← next edge in the queue // i.e. lightest edge yet to be considered

4 if (T ∪ {e}) contains no cycles then

5 T ← T ∪{e} // By red rule, e belongs in T ∗.

6 end

7 end

8 return T

Proof: We are given a graph G and a cut S ⊂ V . We say that an edge is in a cut S if exactly

one incident node is in S and the other incident node of the edge in V \ S. Let e∗ = (u, v) be the

minimum weight edge in cut S. Assume toward contradiction that the edge with minimum weight

leaving cut S is not in the MST T , i.e. that e∗ 6∈ T where T is the MST of G and

e∗ = arg min
e∈S

w(e).

Suppose e∗ = (u, v). Since T is a spanning tree of G, we know that u and v are connected in the

edge set of T , i.e. there exists a u-v path in T . Of course, we have assumed that (u, v) 6∈ T . We

construct a u-v path using depth first search. Let (x, y) = e′ denote the edge in T which crosses

cut S in the u-v path. Replace (x, y) with (u, v). Call the result T ′.

We claim that T ′ = (T \ (x, y)) ∪ (u, v) is still a tree. We first claim T ′ retains connectivity

among all nodes. To see this, realize first that since (x, y) and (u, v) each have exactly one incident

node in S and one incident node in V \ S, then it is not possible that either (x, y) or (u, v), when

removed from T , could result in S becoming disconnected or V \S becoming disconnected. Hence,

without either of these edges, we can get from all nodes in S to all other nodes in S, and same goes

for the set V \ S. It remains to show that we can still traverse from S to V \ S. Realize that all

paths previously going from S to V \ S using (x, y) can now simply utilize (u, v) instead.

Further, realize that we have not created any cycles. Specifically, when we add edge (u, v) to the

tree T , we induce a cycle. But realize that the edge (x, y) is part of this cycle, and we immediately

remove it. Hence in maintaining connectivity and keeping exactly n − 1 edges, by definition of a

tree we know that the result is acyclic.

Since e∗ is the minimum weight edge in S, and since it is not contained in T , we know that

w(e∗) < w(e′). But then this implies that

w(T ′) =
∑
e∈T ′

w(e) =
∑
e∈T

w(e)− [w(e′)− w(e∗)︸ ︷︷ ︸
>0

] <
∑
e∈T

w(e) = w(T)

But this is a contradiction, since T was defined as the MST of G. Thus, e∗ is in the MST of G.

7

2.2 Complexity Analysis for Kruskal’s

A brief complexity analysis of Kruskal’s algorithm is as follows.8 Recall work is defined as T1 =

W (n).

Sorting Edges Our QuickSort algorithm requires E[W (n)] = O(m logm) = O(m log n).

Checking for Cycles Specifically because we are considering adding a single edge to a tree,

we can check if we are inducing a cycle in almost constant time; specifically the work required is

α(m,n), where α denotes the Inverse Ackermann function.[2]

We show now quickly a way to check for cycles in O(log n) work that is a bit more accessible.

We must ensure that if edge e = (u, v) to be added, that the component of u is not the same

component as v. To do this, we keep several data structures around: an array and a Binary Search

Tree. We assume that with each component of our graph, we associate with it a binary search tree

storing values of nodes in our graph G which are in a particular component k. In addition, we keep

an array of length n where in each entry, it tells us which component node i currently in.

Hence, given a candidate (u, v), we go to our length n array and look up in constant time a[v]

which tells us that node v in component j. We then go to our BST corresponding to component j,

and search in O(log n) time to check if node u in the same component.

Updating Data Structures if we Add an Edge If we find they share the same component

already, we discard the edge and continue. Otherwise, the edge turns out to connect two compo-

nents, hence we must update our data structures. We go to array A of length n, and write down

that u now belongs to v’s component.9 This last step requires O(1) work.

Now, we must merge the component of u with the component of v. Two merge two binary

search trees, we first flatten each BST into a sorted linked list with O(n) work using in order

traversal. We then merge two sorted lists in O(n) work to get a sorted array. We then need to

form a BST with our sorted array. To do this, we fix attention to the element in the middle of

our array. Realize that all preceding elements in the list are no larger than itself, and all elements

following are no smaller. We may make the same observation for the left and right partitions, each

time storing pointers from the median element of the list to the left and right children medians.

In this way, we re-construct our BST with O(n) work, since we only end up applying a constant

amount of work to each element in our sorted array.

Total Work Sorting edges costs O(m log n) work. Our while loop iterates over at most m edges.

Checking for cycles each iteration costs O(log n) work. Hence we have incurred O(m log n) work

8It’s worthwhile to note that since
(
n
2

)
≤ m =⇒ m = O(n2), hence any O(logm) term may actually be replaced

by O(logn), using the fact that logm = O(logn2) = O(2 logn) = O(logn). We leave O(logm) terms in place here

for pedagogical purposes.
9We resolve the conflict of which node to join to which component by (arbitrarily) choose node index v as the

parent since it is larger than node index u.

8

https://en.wikipedia.org/wiki/Ackermann_function#Inverse

thus far without even considering how much it costs to update our data structures when we add

an edge to our tree.

Realize that we only need to add n − 1 edges before we construct a tree. Further, each

edge we add requires O(n) work. Hence the entire tree construction process takes O(n2) work.

Since O(n2) = O(m), the work required to sort our edges dominates, and total work required is

O(m log n).

3 Parallel MST via Boruvka’s Algorithm

Since we need to evaluate the edges in order of weight, Kruskal’s algorithm is inherently sequential.

We need a new approach if we want a parallel MST algorithm. Kruskal’s algorithm is instructive in

that it uses the Cut Property, Theorem 2.1 which we proved above. Our parallel algorithm, which

is really Boruvka’s algorithm, will also use this property. [4]

3.1 Observation - Smallest Weight Incident Edge on each Node belongs in MST

A single node is a subset of the nodes, i.e. each node can be considered individually to define a

cut. And so if you look at a single node and its incident edges, the smallest one must be in the

MST by applying theorem 2.1.

Realize that if we determined the smallest weight edge incident to each node in our graph,

we must find at least n/2 unique edges belonging to the MST. Why n/2? When we search for a

lowest weight incident edge on each node, realize that it’s possible the node to which such an edge

connects also selects the same edge for inclusion in the MST. At worst, this could happen for each

node. Hence we must find at least n/2 edges in our MST.

3.2 Edge Contraction

Before we can recursively apply our algorithm, we must first take each of the (at least) n/2 edges

we found belonging to the MST and “merge” the two incident nodes into one.

Deleting Duplicate Edges Suppose we add edge (u, v) to our tree. The neighborhood of u and

the neighborhood of v may overlap, hence we have two ways to get from super-node u-v to such

a neighbor t. When we contract edge (u, v), we would yield a multi-graph, in which two vertices

may be connected by more than one edge. We wish to avoid this, and since our algorithm uses the

Red-Rule (and is interested in the lowest weight edge in a cut), we can ignore the edge with larger

weight. That is, if Γ(u)∩Γ(v) 6= ∅ in our original graph G, then for each node t in the intersection

of these two neighborhoods, we compare w(u, t) with w(v, t) and delete the edge with larger weight.

Recursive formulation But notice that when we contract the edges, the resulting “super” node

(consisting of multiple nodes) itself defines a cut. Hence we can again apply the Red-Rule and find

the smallest weight edge incident to each of the nodes in the contracted graph, and again continue

to find more edges belonging to the MST. Hence we repeat the algorithm until we realize an MST.

9

https://en.wikipedia.org/wiki/Multigraph

Since each time we find at least n/2 edges, we only must repeat our algorithm at most log2 n times

before finding an MST.

3.3 Boruvka’s Algorithm

We assume that the graph is stored in an Adjacency-List, i.e. for each node we store its neighbors

in a linked list. Since each node can have at most n− 1 neighbors, each adjacency list can have at

most n− 1 entries. There are n adjacency lists (one for each node).

Algorithm 3: Boruvka’s Algorithm

Input : Graph G, represented by adjacency list

1 for each node, in parallel do

2 Compute smallest weight incident edge // O(m) work, O(log n) depth

3 end

4 Contract edges

5 Merge Adjacency Lists // O(n) work and O(1) depth

6 Recurse

3.4 Analysis

3.4.1 Finding Smallest Weight Incident Edges

Examine the initial for loop which is executed in parallel. We know that we’re looking for smallest

weight edges, hence we know that we need to examine each edge at least once, i.e. we require at

least O(m) work. Do we require more? No. By the handshake lemma,
∑

i deg(vi) = 2|E|. Since

for each node v ∈ V , we need to find the minimal weight incident edge, we must scan through 2|E|
neighbors in total. We may use our parallel quickSelect algorithm on each adjacency list which

requires O(deg(vi)) work and O(log deg(vi)) depth. Summing across To bound total work, we must

sum across all nodes, hence total work is O(m) by handshake lemma. For depth, realize that we

are concerned with maxi deg(vi), which is O(n). Hence depth is O(log n).

3.4.2 Contracting Edges

Although we’ve shown that we remove n/2 isolated vertices in each round, we have not shown

anything about how many edges we remove in each iteration. The question remains, how fast are

our sub-problems decreasing in size? Notice that the number of edges removed in a contraction

is at least equal to the number of vertices (since each vertex selects a lowest eight incident edge).

Consider a best case possible sequence of events.We cite Blelloch and Maggs, specifically section

16.2.[1]

10

https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Handshaking_lemma
http://www.parallel-algorithms-book.com/

round vertices edges

1 n m

2 n/2 m− n/2
3 n/4) m− n/2− n/4 = m− 3n/4
...

...
...

k n/2k−1 m− (2k−1 − 1)n/(2k−1)

Notice that for all k ∈ N,

n
2k−1 − 1

2k−1
= n

(
1− 1

2k−1

)
︸ ︷︷ ︸

<1

hence the number of edges never quite drops below m − n. So as long as there are m > 2n

edges to start with, work is O(m log n).

Crucial Observation: Minimum Weight Edges form a Forest Crucially, in the first stage

of our algorithm, each node its own connected component. It’s also a tree, since a component of

size 1 with 0 edges is connected and acyclic hence it’s a tree. Realize that when we expand via

minimum weight edges, since these edges are guaranteed to be in the MST, they cannot form a

cycle, hence the result we get is a forest. Hence, our job is now to actually contract an entire tree

(such that we may apply this to each tree in the forest).

To contract a tree, have each node (in parallel) flip a coin. If a vertex flips heads, it becomes

the center of a star. If it flips tails, then the vertex attempts to become a satellite of (some) star by

finding a neighbor which is a center.10 If no such neighbor exists, i.e. if all other neighbors flipped

tails or the vertex is isolated, then the vertex becomes a center.

When we perform a contraction, we need to select one node as the center, and the rest are

satellites. Edges between satellites and centers must be deleted. Edges which cross partitions must

be kept.11

Claim 3.1 For a graph G with n non-isolated vertices, let Xn be the random variable indicating

the number of satellites in a call to our tree contraction process described above. Then,

E[Xn] ≥ n/4.

Proof: Consider any non-isolated vertex v ∈ V (G). By definition, a non-isolated vertex has at least

one neighbor, hence the probability that v becomes a satellite is at least Pr(node v flips Tails) ×
Pr(neighbor flips Heads) ≥ 1

4 . Hence by linearity of expectation,

E[# Isolated Vertices] =
∑

non-isolated vertices

E[vertex i becomes isolated] ≥ n/4.

10If multiple a vertex has multiple neighbors which are centers, it may select one arbitrarily. For example, we select

the one with lowest node index.
11We now turn to Lemma 16.17 of Blelloch and Maggs.

11

Contracting a tree yields another Tree Since when doing start contraction on a tree, it

remains a tree on each step, the number of edges does down with the number of vertices. Further,

since a tree on n nodes has n−1 edges, the number of edges in a forest is never more than n. Hence

the number of edges in our graph decrease geometrically in expectation. Hence total expected work

given by

E[W (n,m)] =
∞∑
i=0

(
3

4

)i

kn = O(n).

The Depth of the contraction is given by E[D(n,m)] = O(log n) since when we accumulate

neighborhood lists, adding an edge to it requires O(log n) depth since the height of the neighbor

hood tree is at most O(log n).

3.4.3 Merge Adjacency Lists

In terms of our data structures, we have n adjacency lists, and if we are contracting edge (u, v), then

we must merge their corresponding adjacency lists together. Suppose that our list data structure

is singly linked with a head to both the head and tail. Since u < v via lexicographical comparison,

we choose to make u the “parent” node, i.e. v’s neighbors are absorbed into the neighborhood of

u. Hence, we may simply take the tail of u’s adjacency list and point it to the head of v’s. This

takes O(1) work.

Since we must contract at least n/2 edges each iteration, this requires O(n) work total. Notice

that we may contract each edge independently of the rest, hence we have O(1) depth.

3.4.4 Total Work and Depth

Total Work Notice that our algorithm employs unary tail recursion. We have a chain of O(log n)

recursive calls to our algorithm. At each recursive call, we require O(m) work to be performed,

since our bottleneck is in finding the smallest weight edge incident each component. Hence total

work simply W (n,m) = O(m log n).

Total Depth Note that at each of the O(log n) recursive calls, we require O(log n) depth in order

to perform a min-scan. Hence total depth given by D(n,m) = O(log2 n).

References

[1] Parallel algorithms, Carnegie Mellon.

[2] A minimum spanning tree algorithm with inverse-ackermann type complexity, NECI Research

Tech Report, (1999).

[3] Probabilistic analysis and randomized quicksort, Carnegie Mellon, 15451-s07, (2007).

[4] J. Nesetril, On minimum spanning tree problem (translation), Elsevier, (2001).

12

	1 QuickSort
	1.1 Analysis on Memory Management
	1.2 Total Expected Work
	1.3 Total Expected Depth
	1.4 A Shortcut for Bounding Total Expected Work

	2 Minimum spanning tree algorithms
	2.1 Sequential approaches and Kruskal's algorithm
	2.2 Complexity Analysis for Kruskal's

	3 Parallel MST via Boruvka's Algorithm
	3.1 Observation - Smallest Weight Incident Edge on each Node belongs in MST
	3.2 Edge Contraction
	3.3 Boruvka's Algorithm
	3.4 Analysis
	3.4.1 Finding Smallest Weight Incident Edges
	3.4.2 Contracting Edges

