
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 15, 5/16/2016. Scribed by Jayanth Ramesh, Hao Wu.

15.1 Node Iterator Algorithm

The work done by the mappers in the node iterator algorithm can be captured in the following

steps

Algorithm 1 MAP(G(V,E)

1: for v ∈ V do

2: for (u,w) ∈ Γ(v)× Γ(v) do

3: Emit ((u,w), ”to be checked”)

4: end for

5: end for

The total time taken by the algorithm can be seen as the time taken by the following three

stages

• Last Mapper

• Shuffle size

• Last Reducer

Naively, the last mapper would take time O(n2). But by using a clever trick, this can be brought

to O(m
3
2 ).

The Trick

Instead of looking at all pairs of edges in the neighborhood of a particular node , we only look at

those neighbors of a node v whose degree is higher than that of v. Let x ≺ y if deg(x) < deg(y),

where we break ties arbitrarily but consistently (say, based on the node id). This new neighborhood

list is denoted by Γ∗(v)

Analysis

Introduce t > 0 All nodes with deg(v) ≥ t are called high degree nodes and nodes with deg(v) < t

are called low degree nodes. Observation: One property here is that the modified neighborhood

list of a node with high degree will consist of only high degree nodes. The number of computations

by the mapper is ∑
v∈V

(deg∗(v))2
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where deg∗(v) denotes the size of Γ∗(v). In this particular problem , the last mapper can’t take

any longer than the shuffle size. The shuffle size is upper bounded by∑
v∈V

deg(v)<t

(deg∗(v))2 +
∑
v∈V

deg(v)≥t

(deg∗(v))2

Let

A =
∑
v∈V

deg(v)<t

(deg∗(v))2

and

B =
∑
v∈V

deg(v)≥t

(deg∗(v))2

There are at most 2m
t high degree nodes. Hence, the number of triangles formed by higher degree

nodes is bounded by

B ≤
(2m

t

)3
Moreover,

A =
∑
v∈V

deg(v)<t

(deg∗(v))2

A ≤
∑
v∈V

deg(v)<t

t(deg∗(v))

A ≤ t(2m)

Therefore,

A + B ≤ 2mt +
(2m

t

)3
Minimizing the above expression with respect to t, we have at t =

√
m

A + B ≤ O
(
m

3
2

)
This clever method will have to do the same order of work as the naive method if the graph were

dense, but for a sparse graph, this method has much better time complexity. The above analysis

is also tight if an algorithm has to list all the triangles in a graph. Consider a lollipop graph as

shown in the figure below, where the complete graph part has
√
n nodes and the path graph part

has n−
√
n nodes. The number of triangles is given by T =

(√
n
3

)
= O(m1.5) triangles, and hence

this bound is tight for an algorithm that has to list all the triangles in a graph.
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Credit:Wolfram Alpha : http://mathworld.wolfram.com/LollipopGraph.html

Figure 1: A lollipop Graph [1]

15.2 Combiners

When the reduce function is an associative binary operator, a Combiner can be used in between the

Map and the Reduce to reduce the volume of data transfer between them. A Combiner performs a

local Reduce to summarize the map output records with the same key before the emission occurs.

The following MapReduce task diagram shows the Combiner phase (Fig. 2).

Figure 2: A MapReduce task diagram showing the combiner phase. [2]
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15.3 Broadcasting

For optimization problems on the distributed system, it is often needed to propagate current guess

for optimization variables to all machines. Such one-to-all communication operation is called broad-

casting. The exact wrong way to do it is with “one machines feeds all”, which requires p rounds of

communication, while using the Bit-torrent broadcasting instead needs only log(p) rounds (Fig. 4).

Figure 3: The schematic of Bit-torrent broadcasting.

15.3.1 Broadcast Rules

Broadcast variables allow the programmer to keep a read-only variable cached on each machine

rather than shipping a copy of it with tasks. They can be used, for example, to give every node a

copy of a large input dataset in an efficient manner.
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Figure 4: Broadcasting a value to executors. [3]

• Create with SparkContext.broadcast(initialVal)

• Access with .value inside tasks (first task on each node to use it fetches the value)

• Cannot be modified after creation

15.3.2 Example: Replicated Join

Figure 5: Replicated join.
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15.4 Spark for Python (PySpark)

The Spark Python API (PySpark) exposes the Spark programming model to Python. Spark core

is written in Scala. PySpark calls existing scheduler, cache and networking layer (2K-line wrapper)

to automatically ship Python functions to workers, along with any objects that they reference.

Instances of classes will be serialized and shipped to workers by PySpark. Therefore, no changes

to Python is required.

Figure 6: Schematic of pySpark.
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