
CME 323: Distributed Algorithms and Optimization, Spring 2016

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 17, 5/23/2016. Scribed by Xin Jin and Yi-Chun Chen.

Lecture outline:

• Covariance matrices and all-pairs similarity

• Computing ATA

• General convex optimization, where “general” means gradient doesn’t necessarily exist

What can be considered a good distributed algorithm? For PRAM models, a good parallel algo-

rithm usually has the same work as the sequential version, and has small, say logarithmic, depth.

However, for distributed algorithms, having communication costs that are independent of some

input dimensions is often a more important consideration.

17.1 Computing ATA

A is an m× n matrix:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


We assume A is tall and skinny, i.e, m� n. Examples values would be m = 1012 and n ∈ {104, 106}.
Moreover, A has sparse rows, each of which has at most L nonzeros. In general, A is stored across

hundreds of machines and cannot be streamed through a single machine. In particular, even two

consecutive rows may not be on the same machine.

An example of A in real applications would be a Netflix matrix: A lot of users and only a

few movies. Rows are all sparse, but some column can be very dense, e.g., the column for movie

Godfather.

Our task is to compute ATA which is n × n, considerably smaller than A. ATA is in general

dense; each entry is simply a dot product of a pair of columns of A.

Algorithm 17.1 NaiveMapper (ri)

for all pairs (aij , aik) in ri do

Emit ((j, k)→ aijaik)

end for

We first describe an easy but naive algorithm: since each entry of the product matrix is of the

form
∑

i aikaij , we can emit all entry products between column k and j to one reducer and let

1

http://stanford.edu/~rezab/dao 


Algorithm 17.2 NaiveReducer ((i, j), 〈v1, . . . , vR〉)
output cTi cj →

∑R
i=1 vi

that reducer do the summation. See (17.1) and (17.2) for the pseudocodes of the Mapper and the

Reducer. Easy to see that the shuffle size is O(mL2) and the largest reduce-key is O(m). Since

m is usually very large (e.g., 1012), this algorithm would not work well. It turns out that we can

bring down both complexities via clever sampling.

We need the following notion of similarity of two vectors

Definition 17.1 (Cosine Similarity) The cosine similarity between two columns ci and cj is

defined as

cos(i, j) =
cTi cj
‖ci‖‖cj‖

.

Algorithm 17.3 DIMSUMMapper (ri)

for all pairs (aij , aik) in ri do

With probability min

{
1,

γ

‖cj‖‖ck‖

}
, emit ((j, k)→ aijaik)

end for

Algorithm 17.4 DIMSUMReducer ((i, j), 〈v1 . . . , vR〉)

if
γ

‖ci‖‖cj‖
> 1 then

output bij →
1

‖cj‖‖cj‖

R∑
i=1

vi

else

output bij →
1

γ

R∑
i=1

vi

end if

The Dimension Independent Matrix Square using MapReduce (DIMSUM) algorithm is described

in (17.3) and (17.4). The DIMSUM algorithm outputs the cosine similarities (in fact probabilistic

estimates of the cosine similarities). Also note that you need to compute the norms of columns

beforehand (which requires all-to-all communication). To see why the outputs are estimates of the

similarities, define ṽi to be vi if vi is emitted in (17.3) and 0 if not, and R the number of nonzero

products for ci and cj (vi and R are the same as in (17.1) and (17.2), not as in (17.3) and (17.4)).

Then the expectation of an output from (17.4) is

E

[
1

γ

R∑
i=1

ṽi

]
=

1

γ
P (ṽi = vi)

R∑
i=1

vi =
1

‖ci‖‖cj‖

R∑
i=1

vi.

We shall prove that the shuffle size is O(nLγ) and largest reduce-key is O(γ). To simplify the proof,

we assume Aij ∈ {0, 1}, and thus ‖ci‖2 =
√

#(ci), where #(ci) denotes the number of nonzeros

2



in ci. Also we let #(ci, cj) denote the number of co-occurrences of nonzeros in ci and cj , i.e., the

number of k’s for which cikcjk 6= 0.

Theorem 17.2 For {0, 1} matrices, the expected shuffle size of DIMSUMMapper is O(nLγ).

Proof: The expected contribution from each pair of columns will constitute the shuffle size:

n∑
i=1

n∑
j=i+1

#(ci,cj)∑
k=1

P (DIMSUMEmit(ci, cj)) =

n∑
i=1

n∑
j=i+1

#(ci, cj)P (DIMSUMEmit(ci, cj))

≤
n∑

i=1

n∑
j=i+1

γ
#(ci, cj)√

#(ci)
√

#(cj)

≤ γ

2

n∑
i=1

n∑
j=i+1

#(ci, cj)

(
1

#(ci)
+

1

#(cj)

)
(by AM-GM)

≤ γ
n∑

i=1

1

#(ci)

n∑
j=1

#(ci, cj)

≤ γ
n∑

i=1

1

#(ci)
L#(ci)

= γLn.

On the other hand, the expected reduce-key size is at most

min {#(cj),#(ck)} × γ

‖cj‖‖ck‖
≤ γ,

which implies the largest reduce-key is O(γ).

The key improvement of the DIMSUM algorithm over the naive one is that the complexities

now are independent of the dimension m. This is achieved by sampling high magnitude columns

with low probabilities. The parameter γ is a knob that can be used to preserve similarities and

singular values:

• With a low setting of γ, i.e., γ = Ω(log(n)/s), preserve similar entires of ATA

• With a high setting of γ, i.e., γ = Ω(n/ε2), preserve singular values of ATA

Full proofs of the preservation properties can be found in [1].

17.2 Gradient descent

F (x) =

n∑
i=1

Fi(x) (1)

∇F (x) =
n∑

i=1

∇Fi(x)

3



∇Fi(x) ∈ Rd, and the sum is computed via Reduce. The communication cost is independent of n.

For general convex optimization problems, you may not have gradients (requires differentiability of

objectives) or even subgradients (requires continuity of objectives).

ADMM Introduce xi, for which each machine gets one xi. Instead of (1), we solve the following

problem

min
xi,z

P∑
i=1

Fi(xi)

such that ∀1 ≤ i ≤ p, xi − z = 0

The alternative formulation can be numerically solved by the following iterative algorithm:

xk+1
i = argmin

xi

{
Fi(xi) + (yki )T

(
xi − x̄k

)
+
p

2
‖xi − x̄k‖22

}
yk+1 = yki + P

(
xk+1
i − x̄k+1

)
x̄k+1 =

1

P

P∑
i=1

xki

Only requires all-to-one communication of size d. For details, see [2].

If you have strongly convex functions, you can do parallel SGD:

1. Shuffle data

2. Solve locally on each machine

3. Average results

References

[1] Zadeh, Reza Bosagh, and Gunnar Carlsson. ”Dimension independent matrix square using

mapreduce.” arXiv preprint arXiv:1304.1467 (2013).

[2] Boyd, Stephen, et al. ”Distributed optimization and statistical learning via the alternating

direction method of multipliers.” Foundations and Trends in Machine Learning 3.1 (2011):

1-122.

4


	17.1 Computing ATA
	17.2 Gradient descent

