CME 323: Distributed Algorithms and Optimization, Spring 2015
http://stanford.edu/~rezab/dao.
Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 18, 5/25/2016. Scribed by Vishakh Hegde, Alex Williams and Patrick
Landreman.

Lecture outline:
e Matrix multiplication on a cluster

e Singular Value Decomposition

18 Matrix Multiplication on a Cluster

In the first half of this course, we have seen algorithms to perform matrix-matrix multiplication,
assuming the PRAM model. In this lecture we will see how we can perform matrix-matrix multi-
plication in a distributed manner. In Spark, matrices are typically stored broken up for storage in
three different ways:

e By entries (CoordinateMatrix): stored as a list of (i, j, value) tuples
e By rows (RowMatrix): each row is stored separately (e.g. Pagerank)

e By blocks (BlockMatrix): by storing submatrices of a matrix as dense matrices, block matrices
can take advantage of low-level linear algebra library for operations like multiplications.

Consider two matrices A, of size m x k and B, of size k x n. The matrix product AB will have size
m x n. Let these matrices be saved as an RDD of (i, j, value) corresponding to the ij*" element of
A and (p, q,value) corresponding to the pg!” element of B. The ig™" element of the product AB
is (AB)q = Zle A;jBjq. So it is clear that in order to perform a reduce operation (summation)
in the MapReduce framework, we first need to get these values to have the same key. Therefore,
we need to produce key-value pairs with the value being A;;B;j, and the key being (i,q) for all
possible values of j. The Map phase will constitute an all to all communication. We then do a
ReduceByKey operation to sum up all values corresponding to the same key.

19 Singular Value Decomposition (SVD)

The rank-r singular value decomposition (SVD) is a factorization of a real matrix A € R"*™, such
that A = ULVT, where U € R™*" and V € R™ " are unitary matrices holding the left and right
singular vectors of A, and ¥ is a r X r diagonal matrix with non-negative real entries, holding the
top r singular values of A.

http://stanford.edu/~rezab/dao

19.1 When A is a RowMatrix

It is easy to see that the singular values and right singular vectors can be recovered from the SVD
of the Gramian matrix AT A:

ATA=wsvhHTusv! =vsuTusv? = ve2v?

We can exploit this property to efficiently compute the SVD of a tall-skinny matrix. If n is small
enough to fit on a single machine, then A can be distributed as a one-dimensional block-row matrix
(in Spark this is called a RowMatrix). We compute AT A using the methods described in the
previous section, then solve the SVD of AT A locally on a single machine to determine ¥ and V.
Finally, we can solve for U by simple matrix multiplications:

A=UxVT = U=AVvxy!

The key observation is that AT A is a much smaller matrix than A when n < m. In general, com-
puting the rank-r SVD of A will cost O(mnr) operations (not to mention expensive communication
costs), while this computation only costs O(n?r) operations for AT A. Of course, if A is short and
fat (i.e. n > m), we can run this same algorithm on A”. The complete algorithm is given below:

Procedure 1 SVD of a RowMatrix
Input: A € R™*™ and desired rank r. A is distributed as a RowMatrix across p machines, machine

¢ holds a submatrix A®) € R» ",
Output: The singular value decomposition of A. U is distributed as a RowMatrix similar to A.
1: Each machine computes AT A®)
2: reduce: ATA=3"1 AOTAO

> The result is a small n x n matrix
V2VT = ATA
=32
broadcast: VX!
Each machine computes U = 4Oy 11

Communication costs: We assume that we use combiners so that each machine locally computes
its portion of AT A in line 1 separately before communication between machines occurs in line 2.
The only communication costs are the all-to-one communication on line 2 with message size n?,
and the one-to-all communication on line 5 with message size nr. These require O(logp) messages

when a recursive doubling communication pattern is used.

19.2 When A is square

The algorithm which produces the k largest eigenvectors of AT A is implemented with ARPACK
and requires successive calls of matrix-vector multiplication. In the tall & skinny case above, AT A
is relatively small and can be stored locally on the Driver machine. In the case where A is square
or nearly square, however, AT A remains a large matrix and the rows must be distributed. In this
situation, the updated vector (AT A)v is produced by the following:

e Broadcast v to all workers

T

e Each worker computes the ith element of Av = a; v according to whichever rows of A are

present

e The ith column of AT is then scaled by the corresponding result of the previous dot product.
Since the columns of AT are simply the rows of A, no additional data is needed

e The scaled columns are reduced by summation on the Driver

The above process is implemented using an Aggregate method. This distributed solution
requires passing data over the network O(k) times, compared to O(1) when the Gramian matrix is
stored locally. In exchange, the storage requirement is reduced from O(n?) to O(n).

20 Distributed Neural Networks

Neural networks (NN) are an extremely active subject of research, enabled by advancements in data
storage and parallel computing power. NNs may be distributed via two schemes: data parallelism
or model parallelism. In the former, the nodes of the NN itself can reside on a single computer,
while the training and input data (possibly large image files, etc) are scattered across a distributed
file system. In model parallelism, the NN itself is too large to contain on a single computer. In
this case, the model is clustered into blocks which communicate between each other using vectors
- each element in a vector represents one input or output ”“synapse” of the block. Below is an
example from DistBelief, a distributed NN developed by Google, inc. The figure illustrates a set of
nodes which have been divided amongst four machines. The links in bold highlight synapses which
communicate via input and output vectors.

Machine |
T =[ulyde

Machine 3
f auIydeL

References

[1] L. Pu and R. Zadeh. (2014) Distributing the Singular Value Decomposition with
Apache Spark. Databricks Company Blog https://databricks.com/blog/2014/07/21/
distributing-the-singular-value-decomposition-with-spark.html

[2] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, MarcAurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng.
(2012) Large Scale Distributed Deep Networks. NIPS http://research.google.com/pubs/
pub40565.html

https://databricks.com/blog/2014/07/21/distributing-the-singular-value-decomposition-with-spark.html
https://databricks.com/blog/2014/07/21/distributing-the-singular-value-decomposition-with-spark.html
http://research.google.com/pubs/pub40565.html
http://research.google.com/pubs/pub40565.html

	18 Matrix Multiplication on a Cluster
	19 Singular Value Decomposition (SVD)
	19.1 When A is a RowMatrix
	19.2 When A is square

	20 Distributed Neural Networks

