CME 323 PROJECT REPORT

“LARGE-SCALE MATRIX FACTORIZATION WITH
DISTRIBUTED STOCHASTIC GRADIENT DESCENT:
IMPLEMENTATION IN SPARK & TESTING ON NETFLIX MOVIE
RECOMMENDATION ”’

Submitted to
Nolan Skochdopole & Andreas Santucci

BY

Wissam Baalbaki

Stanford University
ICME
CME 323

Spring 2016

Professor Reza Zadeh

ABSTRACT

In this project, we discuss “Collaborative Filtering” as the most prominent ap-
proach for Recommender Systems. We analyze various "Matrix Factorization” meth-
ods in the context of “Distributed Computing”. Then, we provide our own im-
plementation of the Distributed Stochastic Gradient Descent matrix factorization
method "DSGD” in Spark. DSGD was initially suggested by Rainer Gemulla, Peter
J. Haas, Erik Nijkamp and Yannis Sismanis in their paper titled "Large-Scale Matrix
Factorization with Distributed Stochastic Gradient Descent”.

Using the ”"Netflix Problem dataset”, we analyze the performance of DSGD in
a Distributed Computing setting, compare it to the Alternating Least Squares Matrix
Factorization Method, which is already implemented in Spark, and make recommen-
dations.

Contents

1 Introduction
1.1 Recommender Systems . .
1.2 Collaborative Filtering . .

2 Matrix Factorization: Popular Models
2.1 Principal Component Analysis
2.2 Singular Value Decomposition

2.3 Alternating Least Squares .
2.4 Stochastic Gradient Descent

3 Distributed Stochastic Gradient

Descent

3.1 Overcoming Sequential Nature of SGD

3.2 Implementation in PySpark

4 Results
4.1 Analysis
4.1.1 Convergence . . .

......................

4.1.2 Communication Costs

4.1.3 Shuffle Size
4.1.4 Scalability
4.2 Conclusion & Future Scope

References

W N

[C BN BT, RN SN S

10
10
14

21
21
21
21
21
22
23

23

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Chapter 1

Introduction

1.1 Recommender Systems

Recommender systems are widely used on the Web for recommending products and
services to users. Recommendations are context dependent (e.g. device, location,
time) and can happen through different interfaces (e.g. mobile browser, tablet, view-

port).
These systems serve two important functions:

1. They help users deal with the information overload by giving them recommen-
dations of products, etc.

2. They help businesses make more profits, i.e., selling more products.

Some examples of Recommender Systems in our everyday life are:

e Movie recommendation (Netflix)

e Related product recommendation (Amazon)
e Web page ranking (Google)

e Social recommendation (Facebook)

e News content recommendation (Yahoo)

e Priority inbox spam filtering (Google)

e Online dating (OK Cupid) Computational Advertising (Yahoo)

While being common and studied for a long time, Recommender Systems still
face major challenges:

1. Scalability: In a typical Recommender System problem, there might be mil-
lions of objects and hundreds of millions of users. Hence, any algorithm per-
forming the recommendation should be able to work on such huge datasets.

ICME, Stanford University 1

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

2. Cold Start: Recommender Systems posses a cold start issue. Both the users
and the objects keep on changing so for any new user we wouldn’t have any
information about his preference for objects in the past and for any new object
we wouldn’t have any information about its appeal to users.

3. Imbalanced Dataset: The user activity/ item reviews are power law distributed.
This means that we have most movies with very small number of reviews and
very few movies with a huge number of reviews associated with them. From a
user perspective, the number items reviewed is a small percentage of all items.

1.2 Collaborative Filtering

As it stands today, Collaborative Filtering is the most prominent approach to
generate recommendations. It’s used by large, commercial e-commerce sites
and applicable in many domains (movies, books, DVDs,...).

The idea behind Collaborative Filtering is using the "Wisdom of Crowd” to
recommend items. User input can be either implicit (either buy an object or
not) or explicit (give a score to an object).

We define different Collaborative Filtering algorithms:

e Baseline Collaborative Filtering: Uses mean of all available ratings u, a
bias for each item b; (how better/worse is a specific item rated relative to
other items) and a bias for each user b, (how better/worse are the ratings of
a specific user relative to other users). Then, the rating of item i by a spe-
cific user u would be: r, ; = u+b; + b, (a convex least squares problem).

e Memory-Based Collaborative Filtering: Recommends items to a specific
user based the proximity of all items to the items the user liked in the past.
Cosine similarity is one proximity measure that could be used.

e Matrix Factorization Collaborative Filtering: Views the combinations of
items and users as a matrix and tries to decompose it into two smaller
matrices. We will discuss Matrix Factorization in details in the following
chapter.

ICME, Stanford University 2

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Chapter 2

Matrix Factorization: Popular Models

Matrix factorization is a latent factor model. It assumes that there are some la-
tent factors (can also be called: features, aspects) aspects Latent variables (also
called features, aspects, or factors) that determine how a specific user rates a
specific item. Thus, the problem shrinks down to finding those features, which
would allow us to predict a rating with respect to a particular user/item combi-
nation. In trying to find the different features, we assume that they are less than
both the number of users and the number of items since it would unreasonable
to assume that each user is associated with a unique feature. This dimension
reduction is one of the main advantages of Matrix Factorization compared to
other Collaborative Filtering Techniques.

Additionally, Matrix factorization has had superior performance both in terms
of recommendation quality and scalability. Scalability became a crucial mea-
sure as we entered the Big Data Era. A popular benchmark for testing new
recommender systems is “The Netflix Problem” and a Matrix Factorization
method, namely Singular Value Decomposition (SVD), has won the Netflix
Prize Contest.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful technique of dimension-
ality reduction and is a particular realization of the Matrix Factorization (MF)
approach. PCA projects a dataset to a new coordinate system by determining
the eigenvectors and eigenvalues of a matrix. It involves a calculation of a
covariance matrix of a dataset to minimize the redundancy and maximize the
variance. The covariance matrix is used to measure how much the dimensions
vary from the mean with respect to each other. The covariance of two random
variables (dimensions) is their tendency to vary together as:

cov(X, Y) = E[E[X] - X] - E[E[Y] - Y]

ICME, Stanford University 3

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

where E[X] and E[Y] denote the expected value of X and Y respectively. For a
sampled dataset, this can be explicitly written out.

cov _ Y (xi— %) (i —)
=Y H

with X = mean(X) and y = mean(Y) , where N is the dimension of the dataset.
The covariance matrix is a matrix A with elements A; ; = cov(i, j) . It centers
the data by subtracting the mean of each sample vector.

Once the unit eigenvectors and the eigenvalues are calculated, the eigenvalues
are sorted in descending order. This gives us the components in order of sig-
nificance. The eigenvector with the highest eigenvalue is the most dominant
principle component of the dataset (PCy) . It expresses the most significant
relationship between the data dimensions. Therefore, principal components are
calculated by multiplying each row of the eigenvectors with the sorted eigen-
values.

The main limitation of PCA is it’s inability to handle missing values (i.e. it
would assume that the rating is O if the user hasn’t rated an item. A modified
version of PCA is Binary PCA, which finds components from data assuming
Bernoulli distributions for the observations. Such probabilistic approach allows
for straightforward treatment of missing values. This would allow us to deal
better with the sparsity of Recommender Systems matrices.

2.2 Singular Value Decomposition

SVD is a well-known matrix factorization technique that factors an m x n ma-
trix R into three matrices as the following:

R=U-S-V

Where, U and V are two orthogonal matrices of size m X r and n X r respec-
tively; r is the rank of the matrix R. § is a diagonal matrix of size r X r having
all singular values of matrix R as its diagonal entries. All the entries of matrix S
are positive and stored in decreasing order of their magnitude. The matrices ob-
tained by performing SVD are particularly useful for our application because
of the property that SVD provides the best lower rank approximations of the
original matrix R, in terms of Frobenius norm. It is possible to reduce the r x r
matrix S to have only k largest diagonal values to obtain a matrix S,k < r. If
the matrices U and V are reduced accordingly, then the reconstructed matrix
R, = Uk.Sk.Vk’ is the closest rank-k matrix to R. In other words, R; minimizes
the Frobenius norm ||R- R|| over all rank-k matrices.

SVD is used in recommender systems to perform two different tasks:

ICME, Stanford University 4

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

e To capture latent relationships between users and items that allow us to
compute the predicted likeliness of a certain item by a user

e To produce a low-dimensional representation of the original user-item space
and then compute neighborhood in the reduced space

Using the low-dimensional representation, a list of fop-N item recommenda-
tions for users is generated.

Below is a description of the steps involved:

(a) Start with a user-item ratings matrix that is very sparse, we call this matrix
R

(b) Remove Sparsity by assigning the average rating of an item to all missing
ratings for that item

(c) Normalize ratings per user (i.e. subtract of user average from each rating
so that the average rating of each user is 0)

(d) Get a normalized matrix R,,,,. Essentially, R, = R+ NPR, where NPR
1s the fill-in matrix that provides naive non-personalized recommendation

(e) Factor the matrix Ry, and obtain a low-rank approximation

(f) Use resultant matrices to compute the recommendation score for any user
c and item p

The dimension of UkS,i/ % is m x k and the dimension of S,i/ 2Vk’ 1s k x n. To
compute the prediction we simply calculate the dot-product of the ¢ row of

UkS,i/ * and the p™ column of S,i/ 2Vk’ and add the user average back using the
following:

Chype = C+ Uk /55 (0) /S Vi (P)

Note that even though the R,,,,,;, matrix is dense, the special structure of the ma-
trix NPR allows us to use sparse SVD algorithms whose complexity is almost
linear to the number of non-zeros in the original matrix R. The optimal choice
of the value £ is critical to high-quality prediction generation. We are interested
in a value of k that is large enough to capture all the important structures in the
matrix yet small enough to avoid over-fitting errors. Usually, a good value of &
is found by trying several different values.

SVD is able to handle large dataset, sparseness of rating matrix and scalability
problem of CF algorithm efficiently. The prize winning method of the Netflix
Prize Contest employed an adapted version of SVD

ICME, Stanford University 5

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

2.3 Alternating Least Squares

When it comes to using matrix factorization in Recommender Systems, our
goal is to finding an m x r matrix W and an r X n matrix H such that V. ~ WH
for a given m X n input matrix V, in the sense of minimizing a specified loss
function L(V, WH) computed over N training points.

Alternating Least Squares. In its standard form, the method of alternating least
squares optimizes
Ls. =) (Vij— [WH];;)?
i,J
The method alternates between finding the best value for W given H, and find-
ing the best value of H given W. This amounts to computing the least squares
solutions to the following systems of linear equations

Vi* - VVi*Hn = 07

where the unknown variable is underlined. This specific form suggests that
each row of W can be updated by accessing only the corresponding row in
the data matrix V, while each column in H can be updated by accessing the
corresponding column in V. This facilitates distributed processing; see below.
The equations can be solved using a method of choice. We obtain

WnT+1 A (HnHr?)_lHnVTa

Hyi1 +— (W W) WV

n

for the unregularized loss shown above. When an additional L, regularization
term of form A(|W||&+ ||H||%) is added, we obtain

WL, « (HH] +M) 'H,VT
Hypp < (W Wapi +M)~'WTY

n

Since the update term of H,,. | depends on W, {, the input matrix has to be
processed twice to update both factor matrices.

In contrast to SVD, ALS does not produce an orthogonal factorization and it
might get stuck in local minima. However, ALS can handle a wide range of
variations for which SVD is not applicable, but which are important in practice.
Examples include non-negativity constraints, sparsity constraints, weights and
regularization. In general, ALS is applicable when the loss function is quadratic
in both W and H.

ICME, Stanford University 6

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

In Spark MLIib, a distributed version of ALS is implemented for Recommender
Systems. It breaks the matrices W and H into blocks and reduces communica-
tion by only sending one copy of each user vector to each item block on each
iteration, and only for the item blocks that need that user’s feature vector.

This is achieved by precomputing some information about the ratings matrix to
determine the ”out-links” of each user (which blocks of items it will contribute
to) and "in-link” information for each item (which of the feature vectors it
receives from each user block it will depend on). This allows us to send only an
array of feature vectors between each user block and item block, and have the
item block find the users’ ratings and update the items based on these messages.

2.4 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD), is an iterative optimization algorithm which
has been shown, in a sequential setting, to be very effective for matrix factor-
1zation.

The goal of SGD is to find the value 8* € R¥(k > 1) that minimizes a given
loss L(8) . The algorithm makes use of noisy observations L’(8) of L'(8) , the
function’s gradient with respect to 0. Starting with some initial value 6y, SGD
refines the parameter value by iterating the stochastic difference equation

9n+1 = en— Enz,(en)

where n denotes the step number and {€,} is a sequence of decreasing step
sizes. Since —L'(0,) is the direction of steepest descent, (2) constitutes a noisy
version of gradient descent.

Stochastic approximation theory can be used to show that, under certain regu-
larity conditions, the noise in the gradient estimates “averages out” and SGD
converges to the set of stationary points satisfying L'(6) = 0.

In order to apply SGD as a matrix factorization method, we set 8 = (W, H) and

decompose the loss L as in (1) for an appropriate training set Z and local loss

function /. Denote by L, (8) =L;;(0) =(V;j, Wi, H,j) the local loss at position

z=(i, j). We have L'(0) = ZL;(G) by the sum rule for differentiation. DGD
<

methods exploit the summation form of L'(0) at each iteration by computing
the local gradients L(8) in parallel and summing them. In contrast to this exact
computation of the overall gradient, SGD obtains noisy gradient estimates by
scaling up just one of the local gradients, i.e., L'(8) = NL.(8) ,where N = |Z|
and the training point z is chosen randomly from the training set. Algorithm 1
uses SGD to perform matrix factorization.

ICME, Stanford University 7

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values Wy and Hy
while not converged do / * step* /
Select a training point (i, j) € Z uniformly at random.

0
VVZ/* — Wi— €, le(‘/ij7 Wis, H*j)

d
H*j <_H*j_ €n Nﬁl(vz], VVi*y H*j)
J
Wi = W,

end while

Note that, after selecting a random training point (i, j) € Z, all we have to up-
date is W;, and H,;. We don’t have to update the factors of the form Wy, for
i’ #iorH, j for j' # j. That’s because we are representing the global loss as a
summation of all local losses. In particular,

0 LW, HY — 0 ifi£7
oW, ij(W, H) = ai%l(vij, Wix, Hyj) otherwise
and

0 0 if j#£
—L;i(W, H) = :
OHy j (W, H) %UI(V,-J-, Wi, Hyj) otherwise
forl <k<r.

SGD is considered an online learning algorithm as it averages multiple local
losses rather than the exact loss at each step which we calculate in GD. This
naturally raises the questions about its merits as an alternative. The problem
with getting the exact losses using GD is basically its very high computation
costs. Hence, using noisy estimates for the gradient rather than the exact gradi-
ent is much cheaper computationally and we would be able to go many updates
in SGD in the same amount of time it would take us to make one GD update.
The noisy process also helps in escaping local minima (especially those with a
small basin of attraction and more so in the beginning, when the step sizes are
large). Moreover, SGD is able to exploit repetition within the data. Parameter
updates based on data from a certain row or column will also decrease the loss
in similar rows and columns. Thus the more similarity there is, the better SGD
performs. Ultimately, the hope is that the increased number of steps leads to
faster convergence. This behavior can be proven for some problems, and it has
been observed in the case of large-scale matrix factorization. It’s crucial to note
that ALS has higher time complexity per iteration compared to SGD.

ICME, Stanford University 8

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Chapter 3

Distributed Stochastic Gradient Descent

3.1 Overcoming Sequential Nature of SGD

The problem with SGD is that it is an inherently sequential algorithm. Even
when we divide the matrix into blocks (called Stratified SGD ”SSGD”’) and
pick blocks to update at the same time, blocks’ updates can be dependent (i.e.
we need the update in one block in order to update another block. A simple
representation is shown below:

v

Figure 3.1: SGD Sequential Update

Clearly from the figure above, we can’t both z, and z,,+1 along with their cor-
responding factor matrices simultaneously because the updates are dependent.
Both updates use W, and update it so z;, has to be updated before proceeding
with updating z,, 1.

The key idea behind DSGD is to stratify(divide into blocks) the training set Z
into aset S ={Z;, ... , Z,} of g strata so that each individual stratum Z; C Z
can be processed in a distributed fashion. We do this by ensuring that each
stratum is d-monomial”.

A stratum Zg is d-monomial if it can be partitioned into d nonempty subsets
ZV. 72, ... Z% suchthat i # i and j # j whenever (i, j) € Z2 and (i, j') € ZP*

ICME, Stanford University 9

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

with by # by. A training matrix Zg is d-monomial if it is constructed from a d-
monomial stratum Z;.

For example, z, and 7,1 shown below can be updated at the same time:

Zn+1

v

Figure 3.2: SSGD Parallel Update

The idea behind DSGD is to find such blocks that have no data in common and

update them simulatenously.
q
The strata must cover the training set in that U Zs = Z and the parallelism

s=1
parameter d is chosen to be greater than or equal to the number of available

processing tasks.

We first randomly permute the rows and columns of Z, and then create d x d
blocks of size (m/d) x (n/d) each; the factor matrices W and H are blocked
conformingly. This procedure ensures that the expected number of training
points in each of the blocks is the same, namely, N / d?. Then, for a permutation
J1sJ2,---5 jaof 1, 2, . . ., d, we can define a stratum as Zs = zryz2i2y
.U Z%4 where the substratum Z denotes the set of training points that fall
within block Z'. Thus, a stratum corresponds to a set of blocks; the figure
below shows the set of possible strata when d = 3.

-
-

gz o)z [zofEdze [zv]evfed @zv|zv| [z |@d]zv| |zv[zv|ae
o s Tl A s N R EENEE
zolz=fam| pla=fe=| [aofeE]ee| ||| |eo|amfe®| (@] 2e]e
Z1 Za Z3 Za Zs Zs

Figure 3.3: Strata for a 3 x 3 blocking of training matrix V

In general, the set S of possible strata contains d! elements, one for each pos-
sible permutation of 1, 2, . . . , d. We need 3 iterations in order to pass once

ICME, Stanford University 10

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

through all blocks of the original matrix. In each iteration, we select d disjoint
strata (e.g. Z1, Z» and Z3 or Z4, Zs, Zg) in figure 3.3

Given a set of strata and associated weights {wy}, the loss is decomposed into
q
a weighted sum of per-stratum losses: L(W, H) = Z wsLs(W, H) . Losses in
s=1

each stratum can be expressed as:

LS(W7 H) — Cs Z Ll](W7 H)
(i.J)€Zs

where cy is a stratum-specific constant, see the discussion below. When running
SGD on a stratum, we use the gradient estimate

Ly(W, H) = Nyc,Lj;(W, H)

of Li\(W, H) in each step, i.e., we scale up the local loss of an individual train-
ing point by the size Ny = |Zs| of the stratum. Then any given loss function L of
the form can be represented as a weighted sum over these strata by choosing
wy and cg subject to wgcy = 1.

The individual steps in DSGD are grouped into subepochs, each of which
amounts to processing one of the strata. The sequence of strata is chosen such
that the underlying SSGD algorithm, and hence the DSGD factorization al-
gorithm, is guaranteed to converge. Once a stratum & has been selected, we
perform T SGD steps on Zg,; this is done in a parallel and distributed way
using the SGD algorithm described in the previous section. DSGD is shown in
the algorithm below, where we define an epoch as a sequence of d subepochs.
Each epoch roughly corresponds to processing the entire training set once.

Algorithm 2 DSGD for Matrix Factorization

Require: Z, Wy, Hy, cluster size d

W<+ Wy and H <+ Hy

Block Z/W/H into d x d/d x 1/1 x d blocks

while not converged do / xepoch*/

Pick step size €

fors=1,...,d do /xsubepoch*/

Pick d blocks {Z'/1, ..., Z%4} to form a stratum
forb=1,...,d do /*in paralle I*/

Run SGD on the training points in Z%/ (step size =€)
end for end for end while

ICME, Stanford University 11

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

.P.MGIZ-.SN—.V.JQU-.:-7.:.:_,;1&....:_.,?»..:::

W e Wy and H — Hy

while not converged do 7 epoach #/
Pick step size ¢

for = 1...., d do 7# subepoch */
Pick d blocks { Z "1 | Z™4 L o form a stratum
forb=1..._, o deo /7 in parallel 7
o - UTT
end for
end for
end while

until loss minimized —

(][] oen =a=

Y
run local SGD

Figure 3.4: DSGD Algorithm Step-by-Step

12

ICME, Stanford University

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

T S

%

)

3.2 Implementation in PySpark

We present our code in PySpark below:

IIRTRY]

"7””This script runs DSGD on matrix factorization using Spark
import os

import sys

import numpy as np

from numpy import linalg

import multiprocessing

import csv

from operator import itemgetter

from scipy import sparse

SPARK HOME = ”/Users/baalbaki/Documents/Stanford/CME323/Project/spark” #
SPARK Path
PYTHONPATH=SPARK HOME/python/+ PYTHONPATH

7| PYTHONPATH=SPARK HOME/python/lib /py4j —0.8.2.1 — src . zip+PYTHONPATH

os.environ ["SPARK_HOME”] = SPARK_HOME

os.environ[”"SPARK_ LOCAL_IP”] = 7127.0.0.1” # Setting up Local IP
sys.path.append (SPARK_HOME + ”/python”)

from pyspark import SparkContext, SparkConf

s| def main(numberOfFactors, numberOfWorkers, iterations , modelBeta,

modelLambda , inputPathOfV , outputPathOfW , outputPathOfH):
print 'Algorithm in Progress’
numberOfWorkers = int(numberOfWorkers)
iterations = int(iterations)
numberOfFactors = int(numberOfFactors)
modelBeta = float(modelBeta)
modelLambda = float (modelLambda)
conf = SparkConf().setAppName(CME323Project’).setMaster(local)
#sc = SparkContext(conf=conf) #No need to define sc again
if os.path.isdir(inputPathOfV):
p = multiprocessing . Pool()
allPaths = [os.path.join(inputPathOfV, f) for f in os.listdir/(
inputPathOfV)]
res = p.map(rawFileFormat, allPaths)
p.close()
flatResults = [item for sublist in res for item in sublist]
filename = open(output.txt’,’'w’)
filename . write (’\n’.join(flatResults))
data = sc.parallelize(flatResults)
elif os.path.isfile (inputPathOfV):
data = sc.textFile(inputPathOfV)
else:
raise Exception(”Input File Path is invalid”)

#Formatting V
splitRDD = data.map(lambda x: x.split(’, "))

VRDD = splitRDD .map(lambda x: map(lambda y: int(y),x)).sortBy(lambda x:

(x[0],x[1]))

##Initializing variables
t = 100

ICME, Stanford University

13

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

54 numberOfCounts = 0

55 currentlteration = 0

56 isError = False

57 reconstructionError = []

58
59

60 if isError:

lambda x: x).map(lambda x: tuple ([x,np.random.rand (1,
numberOfFactors).astype(np. float32)]))

lambda x: x).map(lambda x: tuple ([x,np.random. rand(
numberOfFactors ,1).astype(np. float32)]))

63 V, selection = loadMatrixSparse (inputPathOfV)

64 while currentlteration != iterations:

65 for stratum in xrange(0,numberOfWorkers —1):

66 keyedV = VRDD. keyBy (lambda x: x[0]%numberOfWorkers) .
partitionBy (numberOfWorkers)

numberOfWorkers==x[0])
68 keyedH = HVectorRDD . keyBy(lambda x: (x[0]+ stratum)%
numberOfWorkers). partitionBy (numberOfWorkers)

partitionBy (numberOfWorkers)
70 RDDsCombined = partitionedV . groupWith(keyedH, keyedW)
71 outputRDD = RDDsCombined. mapPartitions (lambda x:

x+y)
lambda x: x[1])

lambda x: x[1])

/4 outputW = WVectorRDD . collect ()
75 outputW. sort ()

76 outputH = HVectorRDD . collect ()
7 outputH . sort ()

80 W = outputW/[O][1]

81 temporaryCount = 1

82 for Wlindex in xrange(2,outputW[—1][0]+1):

83 if outputW/[temporaryCount][0] == Wlindex:

84 W = np.vstack ([W, outputW/[temporaryCountJ[1]])

85 temporaryCount += 1

86 else:

87 W = np.vstack([W, np.zeros((I,numberOfFactors))])
89 H = outputH[O0][1]

90 temporaryCount = 1

91 for HIndex in xrange(2,outputH[—1][0]+1):
) if outputH[temporaryCount][0] == HlIndex:

94 temporaryCount += 1
95 else:

99 error = calcError(V,W,H, selection)
100 reconstructionError.append(error)
101 print "Reconstruction error:”, error

102 currentlteration += 1

61 WVectorRDD = splitRDD .map(lambda x: int(x[0])).distinct().sortBy/(

) HVectorRDD = splitRDD .map(lambda x: int(x[1])).distinct().sortBy/(

67 partitionedV = keyedV. filter (lambda x: (x[1][1]+ stratum)%

69 keyedW = WVectorRDD . keyBy (lambda x: x[0]%numberOfWorkers).

93 H = np. hstack ([H, outputH[temporaryCount|J[1]])

9% H = np. hstack([H, np.zeros ((numberOfFactors,1))])

mapLossNZSL (x, numberOfFactors)).reduceByKey(lambda x,y:
7 WVectorRDD = outputRDD . filter (lambda x: x[0]=="W’). flatMap (

73 HVectorRDD = outputRDD . filter (lambda x: x[0]=="H’). flatMap (

ICME, Stanford University

14

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

111

114

115

116

118

144

146
147
148
149

150

if currentlteration == iterations:
break
else:
WVectorRDD = splitRDD .map(lambda x: tuple([int(x[0]),1])).

reduceByKey (lambda x,y : x+y).map(lambda x: tuple([x[0], tuple([x

[1],np.random.rand (1, numberOfFactors).astype(np.float32)])]))
HVectorRDD = splitRDD .map(lambda x: tuple([int(x[1]),1])).

reduceByKey (lambda x,y : x+y).map(lambda x: tuple ([x[0], tuple([x

[1],np.random. rand(numberOfFactors ,1).astype(np. float32)])]))
while currentlteration != iterations:
for stratum in xrange(0,numberOfWorkers —1):
keyedV = VRDD. keyBy (lambda x: x[0]%numberOfWorkers).
partitionBy (numberOfWorkers)
partitionedV = keyedV. filter (lambda x: (x[I1][I1]+ stratum)%
numberOfWorkers==x[0])
keyedH = HVectorRDD . keyBy(lambda x: (x[0]+stratum)%
numberOfWorkers). partitionBy (numberOfWorkers)
keyedW = WVectorRDD . keyBy (lambda x: x[0]%numberOfWorkers).
partitionBy (numberOfWorkers)
RDDsCombined = partitionedV . groupWith(keyedH, keyedW)

outputRDD = RDDsCombined. mapPartitions (lambda x: mapLoss(x,

modelLambda, numberOfCounts, t, modelBeta,
numberOfFactors)).reduceByKey (lambda x,y: x+y)

WVectorRDD = outputRDD. filter (lambda x: x[0]=="W’).flatMap (

lambda x: x[1])

HVectorRDD = outputRDD . filter (lambda x: x[0]=="H’). flatMap (

lambda x: x[1])

numberOfCounts = (outputRDD. filter (lambda x: x[0]=="N").
collect())[0][1]

currentlteration += 1

if currentlteration == iterations:
break

if isError:
HFile = open(outputPathOfH, ’'h’)
WFile = open(outputPathOfwW, ’w’)
NZSLPrintCsv (outputW, WFile, outputH, HFile, numberOfFactors)
print reconstructionError

else:
outputW = WVectorRDD . collect ()
outputW. sort ()
WFile = open(outputPathOfwW, ’'w’)
outputH = HVectorRDD. collect ()
outputH . sort ()
HFile = open(outputPathOfH, ’'h’)
W = outputW[O][1][1]

temporaryCount = 1
for Wlindex in xrange(2,outputW[—1][0]+1):
if outputW/[temporaryCount][0] == Wlindex:

W = np.vstack ([W, outputW[temporaryCount J[1][1]])
temporaryCount += 1
else:
W = np.vstack ([W, np.zeros((1,numberOfFactors))])
H = outputH[O][1][1]
temporaryCount = 1
for HlIndex in xrange(2,outputH[—1][0]+1):
if outputH[temporaryCount][0] == HlIndex:
H = np. hstack ([H, outputH[temporaryCount]J[1][1]])
temporaryCount += 1
else:
H = np. hstack([H, np.zeros ((numberOfFactors,1))])

ICME, Stanford University

15

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

189

190
191
192
193
194
195
196
197
198
199

200

def

| def

def

def

def

np.savetxt(outputPathOfwW, W, delimiter=",")
np.savetxt(outputPathOfH, H, delimiter=",")

LoadMatrix(csvfile):
data = np.genfromtxt(csvfile, delimiter=",")
return np.matrix(data)

PrintCsv (outputW, WFile, outputH, HFile, numberOfFactors):
temporaryCount = 0
for Wlindex in xrange(l,outputW[—1][0]+1):

if outputW/[temporaryCount][0] == Wlindex:

WFile.write(’, . join([" %.5f % num for num in (outputW/
temporaryCount [[1][1]).transpose()])+ \n")
temporaryCount += 1
else:
WFile. write(’, .join ([0’ JxnumberOfFactors)+’\n")

temporaryCount = 0
for HlIndex in xrange(l,outputH[—1][0]+1):
if outputH[temporaryCount][0] == Hlndex:
HFile. write(’, .join([%.5f" % num for num in outputH[
temporaryCount [[1][1]])+ ' \n")
temporaryCount += 1
else:
HFile.write(’, . join([0"]xnumberOfFactors)+’\n")
WFile. close ()
HFile. close ()

NZSLPrintCsv (outputW, WFile, outputH, HFile, numberOfFactors):
temporaryCount = 0
for Wlindex in xrange(l,outputW[—1][0]+1):
if outputW/[temporaryCount][0] == Wlindex:
WFile.write(’, . join([%.5f % num for num in (outputW/
temporaryCount J[1]).transpose()])+’\n")
temporaryCount += 1
else:
WFile. write(’, .join([0’ JxnumberOfFactors)+'\n")

temporaryCount = 0
for HlIndex in xrange(l,outputH[—1][0]+1):
if outputH[temporaryCount][0] == Hlndex:

HFile. write(’, .join([%.5f" % num for num in (outputH][
temporaryCount J[[1])])+’\n")
temporaryCount += 1
else:

HFile.write(’, . join([0’]JxnumberOfFactors)+’\n")
WFile. close ()
HFile.close ()
return True

rawFileFormat(filePath):

output = []

file = open(filePath)

movie = (file.readline())[:—2]

for line in file:
ratings = line.split(”,”)
output.append(ratings[0]+ ', +movie+’, +ratings[1])

return output

mapLoss(keyedlter , modelLambda, numberOfCounts, t, modelBeta,
numberOfFactors) :

ICME, Stanford University

16

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

RS
v

)
221

256

258
259
260
261

062

iterableList = (keyedlter.next())[1]
iterableV = iterableList[0]
iterableH iterableList[1]
iterableW = iterableList[2]

WDictionary = {}
HDictionary = {}

newWDictionary = {}
newHDictionary = {}

for elementOfH in iterableH :

HDictionary[elementOfH[0]] = elementOfH[1]
for elementOfW in iterableW:
WDictionary [elementOfW[0]] = elementOfW[1]

for elementOfV in iterableV:
(i,j,rating) = elementOfV
eps = np.power(t + numberOfCounts, —modelBeta)
if j in HDictionary:
inputH = HDictionary[j]
else:
HDictionary[j] = tuple([j,np.random. rand(numberOfFactors ,1)
.astype(np. float32)])
inputH = HDictionary[j]
if i in WDictionary:
inputW = WDictionary[i]
else:
WDictionary[i] = tuple([i,np.random.rand(1l,numberOfFactors)
.astype(np. float32)])
inputW = WDictionary[i]
(WNew, HNew) = L2Loss(rating , inputH, inputW, modelLambda, eps)
numberOfCounts += 1
newWDictionary[i] = WNew
newHDictionary[j] = HNew

return (tuple ([W’ ,newWDictionary. items()]), tuple([H’,
newHDictionary . items ()]), tuple([N’ , numberOfCounts]))

def L2Loss(rating , elementOfH, elementOfW, modelLambda, eps):
(NH, arrayOfH) = elementOfH
(WN, arrayOfW) = elementOfW

WOold = arrayOfW. copy ()
HOld arrayOfH . copy ()

Grad = —2x(rating—np.asscalar(WOIld. dot(HOId)))

arrayOfW = np.add(WOIld, np.multiply (eps, np.multiply (HOId. transpose ()
, Grad) + np.multiply (2xmodelLambda/WN, WOId)))

arrayOfH = np.add(HOIld, np.multiply(eps, np.multiply (WOId. transpose (),
Grad) + np.multiply (2xmodelLambda/NH, HOId)))

return (tuple ([WN, arrayOfW]), tuple([NH, arrayOfH]))
def mapLossNZSL(keyedlter , numberOfFactors):

iterableList = (keyedlter.next())[1]
iterableV = iterableList[0]

ICME, Stanford University 17

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

(SRS
3 1

NN W
2 1

284

286
287

288

289
290

291

293

294

295

296

iterableH = iterableList[1]
iterableW iterableList[2]

WDictionary = {}
HDictionary = {}

newWDictionary {}
newHDictionary = {}

for elementOfH in iterableH :

HDictionary[elementOfH[0]] = elementOfH[1]
for elementOfW in iterableW:
WDictionary[elementOfW[0]] = elementOfW[I]

for elementOfV in iterableV:
(i,j,rating) = elementOfV
if j in HDictionary:
inputH = HDictionary[j]
else:
HDictionary[j] = np.random.rand(numberOfFactors ,1).astype(
np. float32)
inputH = HDictionary[j]
if i in WDictionary:
inputW = WDictionary[i]
else:
WDictionary[i] = np.random.rand (1, numberOfFactors). astype(
np. float32)
inputW = WDictionary[i]
(WNew, HNew) = NZSLLoss(rating , inputH, inputW)
newWDictionary[i] = WNew
newHDictionary[j] = HNew

return (tuple ([W’ ,newWDictionary. items()]), tuple([H’,
newHDictionary . items ()]))

def NZSLLoss(rating , arrayOfH, arrayOfWw):

WOold = arrayOfW.copy ()
HOIld = arrayOfH . copy ()
Grad = —2x(rating—np.asscalar(WOId. dot(HOId)))

arrayOfw
arrayOfH

np.add(WOIld, np.multiply (HOIld. transpose (), Grad))
np.add(HOIld, np.multiply (WOIld. transpose (), Grad))

return (arrayOfW, arrayOfH)

def loadMatrixSparse(csvfile):

value = []
rows = []

columns = []
selection = []
file = open(csvfile)
readerFile = csv.reader(file)
for line in readerFile:

rows.append(int(line[0])—1)

columns . append(int(line[l])—1)

value . append(int(line[2]))

selection .append((int(line[0])—1, int(line[l])—1))
return sparse.csr_matrix((value, (rows, columns))), selection

def calcError(V, W, H, selection):

ICME, Stanford University 18

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

if __name__ == "__main__":

print
difference = V-W.dot(H)
err = 0

for rows, columns in selection:
err += difference[rows,

return err/len(selection)

>

#main(10,2,1,0.8,1.0, test.txt’

columns [« difference [rows, columns]

"h.csv ')

ICME, Stanford University

19

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Chapter 4

Results

4.1 Analysis

In this section, we analyze our the performance of DSGD as a matrix factor-
ization method for Recommender Systems. We look at different aspects:

4.1.1 Convergence

As noted previously, DSGD is guaranteed to converge. In our tests, DSGD and
ALS converged in the same manner but DSGD reported higher Risk Square
Mean Error (RMSE). However, the difference in RMSE between them wasn’t
significant but it’s important to note that both methods converge faster than
other methods and achieve lower RMSE.

4.1.2 Communication Costs

In DSGD, the d-monomial strata representation has reduced communication
costs. We have a block to block communication between epochs. Each ma-
chine will have to send data to one single machine and receive data from one
single machine.

4.1.3 Shuffle Size

When executing DSGD on d nodes in a shared-nothing environment such as
SPARK, the input matrix is only distributed once. Then, the only data that are
transmitted between nodes during subsequent processing are (small) blocks
of factor matrices. In this DSGD implementation, node i stores blocks W', 71\, 72,
... 7" for 1 <i<d; thus only matrices H',H?, ..., H need be transmitted. (If
the W' matrices are smaller, then we transmit these instead). Note that DSGD
only shuffles strata and blocks where as SGD shuffles all data.

ICME, Stanford University 20

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

4.1.4 Scalability

o Input Size: We tested the DSGD algorithm in SPARK on a sample of Net-
flix Problem dataset and we used different size of data and different number
of available ratings (i.e. different sparsity levels).

Rank | Wall Clock Time Per Epoch
(s)
50 | 120
100 | 125
200 | 135

DSGD scaled very well in terms of matrix dimensions and also number
of values in a matrix.

o Number of Machines: We also tested the same dataset on different num-
ber of cores on a local machine (1 core, 2 cores, 4 cores). We also ran the
ALS method already implemented in MLLib as a reference for comparison.
Table Below shows results.

Wall Clock Time
Number of Cores | Our DSGD MLIib ALS
1 X X
2 0.50X 0.51X
4 0.26X 0.25X

DSGD scaled almost linearly when the number of cores was small.

Since DSGD’s majority of the time is spent on communication costs,we
suspected that the scalability might not be as efficient if the number of
cores become too large so that the size of each stratum block is relatively
small. To verify this intuition, we tested the dataset on AWS and used mul-
tiple cores (8 cores, 16 cores, 32 cores, 46 cores). The table below shows
the results:

of Cores | Wall Clock Time Per Epoch
8 X
16 0.52X
32 0.27X
64 0.24X

As expected, the scalability of DSGD got much worse when the number
of cores increased relative to the input size.

ICME, Stanford University 21

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

4.2 Conclusion & Future Scope

In practice, e-commerce sites like amazon.com experience tremendous amount
of user visits per day. Recommending items to these large number of users in
real-time requires the underlying recommendation engine to be highly scalable.
Considering that the majority of time spent by SPARK ALS is on calculations
rather than communication, SPARK ALS scales better than DSGD in practice.
That is confirmed by the extensive use of parallel ALS in practice.

Regarding convergence, DSGD is proven to converge while there is no theory
that SPARK ALS must converge;, however, feedback reported from practical
applications have confirmed that SPARK ALS converges faster than DSGD.

Since training data is sparse and we stratify the training set using data-independent
blocking, a block ZP may contain no training points; in this case we cannot ex-
ecute SGD on the block, so the corresponding factors simply remain at their
initial values.

Hence, we would like to examine other ways to stratify which could be data
dependent so as to keep the size of available rating in each block similar for
example. That should reduce our convergence time.

It’s very important to note that SPARK is much more efficient that MapReduce
for implementing DSGD as it operates on data in memory and it doesn’t have
to write to disk after each iteration. However, We recommend MLILib ALS as the
better Matrix Factorization approach for Recommender Systems.

ICME, Stanford University 22

CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

References

[1] Rainer Gemulla, Peter J. Haas, Erik Nijkamp, Yannis Sismanis; ~Large-
Scale Matrix Factorization with Distributed Stochastic Gradient De-
scent”; Max-Planck-Institut fur Informatik, IBM Almaden Research Cen-
ter

[2] Lslzo Kozma, Alexander Ilin, Tapani Raiko; “Binary Principal Compo-
nent Analysis in the Netflix Collaborative Filtering Task™; Helsinki Uni-
versity of Technology

[3] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John T. Riedl;
” Application of Dimensionality Reduction in Recommender System — A
Case Study”; University of Minnesota, GroupLens Research Group

[4] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, Chih-Jen Lin; A Fast Par-
allel SGD for Matrix Factorization in Shared Memory Systems”; National
Taiwan University

[5] Fanglin Li, Bin Wu, Liutong Xu, Chuan Shi, Jing Shi; A Fast Distributed
Stochastic Gradient Descent Algorithm for Matrix Factorization”; Beijing
University of Posts and Telecommunications

[6] Dheeraj kumar Bokde, Sheetal Girase, Debajyoti Mukhopadhyay,; “Role
of Matrix Factorization Model in Collaborative Filtering Algorithm: A
Survey”; Maharashtra Institute of Technology

[7] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, Rong Pan; Large-
scale Parallel Collaborative Filtering for the Netflix Prize”; HP Labs, Palo
Alto

ICME, Stanford University 23

	Introduction
	Recommender Systems
	Collaborative Filtering

	Matrix Factorization: Popular Models
	Principal Component Analysis
	Singular Value Decomposition
	Alternating Least Squares
	Stochastic Gradient Descent

	Distributed Stochastic Gradient Descent
	Overcoming Sequential Nature of SGD
	Implementation in PySpark

	Results
	Analysis
	Convergence
	Communication Costs
	Shuffle Size
	Scalability

	Conclusion & Future Scope

	References

