
A Distriubuted Implementation for Reinforcement Learning
Yi-Chun Chen1 and Yu-Sheng Chen1

1ICME, Stanford University

Abstract. In this CME323 project, we implement a distributed algorithm for
model-free reinforcement learning. Each processor independently makes deci-
sion, interacts with the environment, and update one Q-function that is shared
by all processors. After updating, processors again make decisions according to
this shared Q-function. The distributed structure can be considered multi-agent
learning, since each processor is an independent learner but sharing some in-
formation with others. Empirical test on one benchmark problem shows that
this distributed implementation indeed accelerates the convergence to optimal
policy.

1. Reinforcement Learning
In this section, we review the basic concepts of reinforcement learning and the model-free
method that will be paralleled in later section.

1.1. Introduction
Reinforcement learning [1] is an area of machine learning, concerned with how agents
ought to take actions in an environment as to maximize cumulative reward. The envi-
ronment is usually formulated as Markov decision process. However, the details of this
Markov decision process, such as state transition model and reward model, are not given
to agents in advance. Therefore, agents must estimate the environment from experience
and make decisions based on their estimated models of environment.

There are two approaches to conquer the reinforcement learning problems. One
is model-based method [2]. Agent estimates transition and reward models directly from
experience. For instance, in maximum likelihood model-based method, agent estimates
transition model by counting N(s, a, s′), which is the number of events that the environ-
ment transits from state s to state s′ by acting action a. Once agent estimates the model,
the corresponding optimal policy can be obtained by value-iteration or policy iteration.

The other approach is model-free method. In contrast to model-based methods,
model-free reinforcement learning does not require building explicit representations of the
transition and reward models. Avoiding explicit representations is attractive, especially
when the problem is high dimensional. Model-free methods estimate the Q-function di-
rectly, which is a function of state-action pairs (s, a) and estimates the maximal cumu-
lative reward after acting action a on state s. Q-learning [3], SARSA [1], and eligibility
traces [1] are well-known model-free methods.

1.2. Q-learning
Q-learning [3] is one of the most popular reinforcement learning algorithm. The idea is
to apply incremental estimation of the Bellman equation of Markov decision process

Q(s, a) = R(s, a) +
∑
s′

T (s′ | s, a)maxa′Q(s
′, a). (1)

Instead of using T and R, the transition and reward models, incremental update rule only
uses current state s, action a, next state s′, and reward r to estimate Q-function:

Q(s, a)← Q(s, a) + α [r + γmaxa′Q(s
′, a′)−Q(s, a)] , (2)

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor.

Once Q(s, a) is updated, the optimal action is simply a∗ = argmaxa′Q(s, a
′).

However, keeping choosing the optimal action from estimated Q(s, a) might lead to over-
exploiting. In reinforcement learning, it is important to balance exploitation and explo-
ration. For example, if we continuously explore the environment, we will obtain more
comprehensive understanding of the model but be unable to cumulate rewards; if we
continuously make the decisions we believe is best without ever trying new strategy, as
always choosing a∗ = argmaxa′Q(s, a

′), then we may miss out on improving our strategy
and accumulating more reward. To balance exploitation and exploration, in this project,
ε-greedy strategy is used. With probability 1 − ε, the best action a∗ = argmaxa′Q(s, a

′)
is chosen; with probability ε, we randomly and uniformly choose other actions.

Agorithm 1 and Figure 1 summarize the pseudocode and structure of Q-learning.

Algorithm 1 Single-processor Q-learning
function Q-LEARNING

t← 0
s0 ← initial state
Initialize Q
loop

Choose action at based on Q and some exploration strategy (ε-greedy)
Observe new state st+1 and reward rt
Q(st, at)← Q(st, at) + α [rt + γmaxa′Q(st+1, a

′)−Q(st, at)]
t← t+ 1

2. Distributed Implementation of Q-Learning
In this section, we propose a distributed version of Q-learning, and further analyze the
algorithm structure and runtime.

2.1. Structure and Algorithm
Assume we have P processors. We can treat each processors as an independent agent.
On the other hand, all agents can get access to a shared Q-function and make decisions
accordingly. After receiving the feedback from the environment, all agents update the
shared Q-function. The structure is shown in Figure 2. Purple circles represent processors.
Each one independently interacts with the environment, as the blow arrows indicate. In
addition, their corresponding current states can be different. Q-function help all agents
to make decisions and require their updates, as shown by brown arrows. If there is only
one purple circle, then the structure in Figure 2 coincides the structure in Figure 1. Note
that communication between processors and Q functions are all-to-one for updating and
one-to-all structure for decision making.

Algorithm 2 summarizes the pseudocode for distributed Q-learning. Each proces-
sor p records its own current state sp,t, chooses action ap,t, and receives next state sp,t+1

Figure 1. Single-processor Q-learning

and reward rp,t from the environment. Note that, for each processor, there is no need to
wait other processors while making decisions or updating Q-function. Once it receives
the feedback from the environment, it updates immediately. This no-waiting update rule
will not cause harm to the convergence, since the expected Q-functions for all agents
are the same which is the true optimal Q-function. The stopping criteria for loop can be
set as reaching maximum number of iterations or converging within predetermined norm
difference of Q-functions. In our implementation, we choose the former as the stopping
criteria.

Figure 2. Multi-processor Q-learning

2.2. Runtime Analysis
Apparently, by using P processors for Q-learning, we are able to obtain P times number
of samples than one processor case during any time period. More samples means con-

Algorithm 2 Multi-processor Q-learning
function DISTRIBUTED Q-LEARNING

Initialize Q
for each processor (agent) p parallelly do

tp ← 0
sp,0 ← initial state
loop

Choose action ap,tp based on Q and some exploration strategy (ε-greedy)
Observe new state sp,tp+1 and reward rp,tp
Q(sp,tp , ap,tp)← Q(sp,tp , ap,tp)+α

[
rp,tp + γmaxa′Q(sp,tp+1, a

′)−Q(sp,tp , ap,tp)
]

tp ← tp + 1

Table 1. Work, depth, and shuffle size on each processor

Work Depth

Make Decision O(|A|) O(log(|A|))
Update Q O(|A|) O(log(|A|))

Shuffle Size O(|A|)

verging to optimal policy faster. The speed-up is more apparent at the beginning period
of the reinforcement learning, as shown in the experiment section.

Table 1 further analyzes the work and depth for each processor. When mak-
ing decision, a∗ = argmaxa′Q(s, a

′) can be obtained by work O(|A|) and depth
O(log(|A|)), where |A| is the number of actions. When updating Q-function, calcu-
lating maxa′Q(sp,tp+1, a

′) also requires work O(|A|) and depth O(log(|A|)). The shuf-
fle size between each processor and Q-function is O(|A|), since each processor p only
needs the array [Q(sp,t, 1), Q(sp,t, 2), Q(sp,t, 3), . . . , Q(sp,t, |A|)] to make decision and
[Q(sp,t+1, 1), Q(sp,t+1, 2), Q(sp,t+1, 3), . . . , Q(sp,t+1, |A|)] to update.

3. Experiment
In this section, we show the implementation of the proposed distributed Q-learning with
programming language Scala on platform Spark [4], and also test it on one classic rein-
forcement learning problem, the 4× 3 maze [5].

3.1. Spark Implementation

The distributed algorithm is implemented in Scala as shown in Figure 3. After launching
the Spark Context, the initial state of each agent is stored distributedly in the cluster with
default partition of Spark. Each agent is modeled as a Mapper process which executes
function mapper and outputs current state, action, local Q value, and its own next state.
The function mapper implementation is shown in Figure 4. After agents finish their local
processes, P Q-value outcomes are calculated among the cluster. To complete the update
of Q table, all agents concurrently write to the Q table stored in the driver machine. This
method only requires O(1) depth since there’s no dependency between agents. And only
one of the agents sharing the same entry of the Q table can update the Q table stored in

the driver machine. Another method of Q value integration is first average all Q values
corresponding to the same table entry, then update the final Q table using the α-update
rule. This method requires O(log(P)) depth at most, since there are at most O(P) agents
sharing the same Q table entry. Finally, each agent updates its own state obtained from
the environment, which completes this iteration.

Figure 3. The Q-learning main flow in Scala

Figure 4. The agent process executed in parallel in Scala

3.2. 4 × 3 Maze

The 4×3 maze is depicted in Figure 5. The environment have 11 states, each correspond-
ing to a grid position, and 4 actions, each corresponding to move in a direction. There
are two states leading to reward, as shown in Figure 5, one for reward 1 and the other for
reward −1. When robot reaches +1 grid or −1 grid, the game restarts.

Figure 6 shows the relation between runtime and cumulative reward with different
number of processors. Cumulative reward is defined as

∑∞
t=0 γ

trt. In addition, γ = 0.95
is given by the experiment setup. The learning rate α is 0.1 and the exploration rate ε

Figure 5. The 4× 3 Maze

is 0.1. Figure 6 demonstrates that if we have more processors, then we can converge to
optimal policy faster. With 10 processors, we obtain optimal policy within 0.5 second.
With 3 processors, optimal policy is obtained within 1.7 second. With only 1 processor,
optimal policy can not be obtained within 3 seconds. Furthermore, with more processors,
samples can cover the state space more uniformly and the resulting Q-function would be
less biased. For example, the p = 1 curve in Figure 6 is strongly zigzagging, since the
learned policy is unstable due to sampling bias. While p = 3 and p = 10 curves are more
smooth.

0 0.5 1 1.5 2 2.5 3

−1

0

1

2

Runtime (second)

C
um

ul
at

iv
e

R
ew

ar
d

p=1
p=3

p=10

Figure 6. The relation between runtime and cumulative reward with respect to
different number of processors

4. Conclusion
In this project, we demonstrate a distributed version of Q-learning, and analyze runtime
and algorithm structure. We further implement the algorithm with language Scala on
platform Spark. The Empirical demonstration on a benchmark problem shows that the
distributed implementation can accelerate the convergence to optimal policy.

References
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA:

MIT Press, 1998.

[2] P. R. Kumar, “A Survey of Some Results in Stochastic Adaptive Control”, SIAM Journal
on Control and Optimization, vol. 23, no. 3, pp. 329-380, 1995.

[3] C. J. Watkins and P. Dayan, “ Q-learning”. Machine learning, vol. 8, pp. 279-292, 1992.

[4] Apache Spark, http://spark.apache.org/

[5] S. Russell and N. Peter, Artificial Intelligence: A Modern Approach, 3rd ed. Upper Saddle
River, NJ: Pearson, 2010.

http://spark.apache.org/

	Reinforcement Learning
	Introduction
	Q-learning

	Distributed Implementation of Q-Learning
	Structure and Algorithm
	Runtime Analysis

	Experiment
	Spark Implementation
	43 Maze

	Conclusion

