PARADIS: A PARALLEL IN-PLACE RADIX SORT ALGORITHM

ROLLAND HE
rhe@stanford.edu

ABSTRACT. Radix sort is an efficient non-comparative integer sorting algo-
rithm which can be generalized to floating point numbers and strings of char-
acters. It is able to achieve a theoretical linear runtime complexity; moreover,
in-place radix sort is able to do this, while only using constant memory. In
this paper, we discuss a few of the innovations which have helped parallelize
in-place radix sort, which have most recently led to PARADIS, an efficient par-
allel in-place radix sort algorithm. Experimental results show that PARADIS
performs quite well

1. INTRODUCTION

Radix sort has long been known and used as a sorting method, dating back to
1887 with the work of Herman Hollerith on tabulating machines [5]. Its attractive-
ness comes from its simplicity, as well as its theoretical worst-case linear runtime
complexity of O(kn), where k is a constant representing the maximum number of
digits for any given number in the data. As a result, radix sort is able to beat the
runtimes of any comparison-based sorting method [6]. Unfortunately, the constant
k factor often ends up being non-negligible in practice, and can often exceed log n.
Therefore, standard radix sort falls short in many applications.

In recent years, with the rise of parallel computing, many advancements have
been made to parallelize radix sort [2][3][4]. In addition, the ever-increasing amounts
of data available has resulted in greater memory demands; therefore, an in-place
version of radix sort was also developed. However, combining these two ideas of
parallelization and in-place sort turns out to be difficult for due to the inherently
sequential nature of standard in-place radix sorting.

Most recently, in 2014, researchers at IBM have developed PARADIS, an ef-
ficient parallel in-place radix sort algorithm [1]. PARADIS introduces two main
improvements over previous radix sort algorithms. First, it introduces a specula-
tive permutation/repair strategy, which is able to efficiently parallelize the in-place
permutation process of radix sort. In addition, the algorithm also implements a
distribution-adaptive load balancing technique to balance the work done by differ-
ent processors during recursive calls.

2. BACKGROUND AND PRIOR RESULTS

2.1. LSD Radix Sort. We will continue adopting the convention of using k to

represent the maximum number of digits in any element of the data. In addition,

we will assume a radix of 10 for representational simplicity — we can easily extend

our results to any radix value. The main idea behind radix sort is to use k passes

of the data, one for each digit position, and sort all the data based on the digit

at that position in a single pass. Since we only have to sort single digits, we can
1

instead place each element in one of 10 buckets, with each bucket corresponding
to a certain digit — this allows us to avoid the O(logn) barrier of comparison sorts
[6]. Below is pseudocode for the naive radix sort algorithm: Since the algorithm

Algorithm 1 Naive LSD radix sort algorithm

function NAIVERADIXSORT(data, k)
buckets = list of 10 buckets
for ¢ from 1 to k do
for elem in data do
d = i’th least significant digit of elem
Place elem in buckets|d]
end for
end for
Replace data with the elements from buckets (in the same order)
return data
end function

goes through k passes of the data and performs constant work for each element,
the total runtime is O(kn). Moreover, the memory complexity is O(n), as during
any given pass, an auxiliary data structure needs to be used to bucketize all the
elements.

2.2. MSD Radix Sort. LSD radix sort unfortunately lends itself to a sequential
nature. In order to introduce some parallelization, MSD radix sort can be used.
Instead of starting from the least significant digit, we instead start sorting from the
most significant digit. The algorithm is as follows: After the first pass through the

Algorithm 2 MSD radix sort algorithm

function MSDRADIXSORT(data, I, k)
buckets = list of 10 buckets
if number of elements in data = 1 then
return data
end if
for elem in data do
d = I’th most significant digit of elem
Place elem in buckets[d]
end for
if [<k then
for bucket in buckets do
bucket = MSDRADIXSORT (bucket, | 4+ 1, k)
end for
end if
Replace data with the elements from buckets (in the same order)
return data
end function

data, we have 10 buckets just as previously, and can make recursive calls to sort
each bucket. Furthermore, since the buckets do not depend on each other, these
2

< : : S >

) the input array, d[0,...,99] evenly divided and assigned to processors P = {0 1,2, 3} to build histograms

I_l..“i.

b) histogram on po (c) histogram on p1 (d) histogram on p2 (e) histogram on ps (f) global histogram

pH, ph', pW, pH%, PR, ph, PR, ph, ph’, ph', pi, pi, ph’ph'ph’ph’
¢, Pt 8 s pt' ptz pt“’ pt" Pt pt’ 2 pt’uvt”: pt s Ptzs pr’
6 13} 200 218 M ?
i0 28 39 >
gho Mo ght ghz M gh3 M "
FL gn) &

g) gh; and gt; for buckets B = {0, 1, 2, 3}, each bucket further partitioned into stripes defined by ph; and pt;
h; and gt; for buckets B h bucket furth d P defined by ph? and pt?

FiGURE 1. Parallel histogram building and preparation for in-
place MSD radix sort, using 4 processors with 4 buckets. Here,
gh and gt represent the head and tail pointers, respectively. Image
used from [1].

calls are independent, and can be parallelized. Therefore, the work and depth can
be represented as follows:

n
W(n) = 10W (1—0) +0(n) (2.1)
D(n):D(lo)—i—O(n) (2.2)
which can easily be solved via the Master Theorem to give W (n) = O(nlogn) and

D(n) = O(n).

A further optimization can be made by parallelizing the bucketizing of elements.
Instead of scanning through the elements sequentially, we can instead assign each
processor an equal chunk of the data to place in the buckets, since placing each
element in a bucket can be done independently. While this does nothing to lower
the work, it does improve the depth:

D(n)zp(10)+0() (2.3)
which can be solved to give D(n) = O(logn).

2.3. In-Place MSD Radix Sort. In order to reduce the amount of extra memory
needed from O(n) to O(1), we can no longer rely on a separate buckets data struc-
ture. Instead, we need to swap elements in place. In order to successfully permute
the elements into their correct positions, we modify our MSD radix sort algorithm.

Instead of explicitly bucketizing each element, we build a histogram to count
the number of elements that belong to each bucket — this will require a single
pass through the data. We can once again take advantage of parallelization by
splitting this counting between processors. Thus, assuming there are p processors,

each process will have to only count O (%) elements; at the end, we simply add

the corresponding counts together to get the number of elements in the data that
3

belong to each bucket (which can also be done in parallel via parallel summation).
Suppose we define this building of the histogram as the function:

buildHistogram(data, I, k, p) — Returns an array with 10 elements of counts cor-
responding to the number of elements in data with digit d at the I’th MSD position.

We omit the pseudocode for the histogram building, as it is trivial and described
above. With the histogram built, we can proceed to the rest of the algorithm. We
want to use head and tail pointers to represent the start and end of each bucket;
then, we iterate through the data, continually swapping elements into their correct
bucket. The head and tail pointers will keep track of which elements are already
swapped in the correct bucket, and will be incremented/decremented accordingly.
Finally, after all elements are swapped to the correct buckets, we can continue
sorting on the next digit, just as before. Figure 1 shows the histogramming process.
The pseudocode of the algorithm is below:

Algorithm 3 MSD in-place radix sort algorithm

function INPLACEMSDRADIXSORT(data, l, k, p)
if number of elements in data = 1 then
return data

end if
histogram = BUILDHISTOGRAM(data, l, k, p)
heads = [0]

tails = [histogram|0]]
for ¢ from 1 to 9 do
heads[i] = heads[i — 1] + histogram[i — 1]
tails[i] = tails[i — 1] + histogram]i]
end for
for ¢ from 0 to 9 do
while heads[i] < tails[i] do
elem = data[headsli]]
while elem is not in the correct bucket do
b = correct bucket of elem
Swap values of elem and data[heads[b]|
heads[b] + +
end while
datalheadsli]] = elem
headsli] + +
end while
end for
if | <k —1 then
for ¢ from 1 to 9 do
d = data from bucket|[i]
INPLACEMSDRADIXSORT(d, [+ 1, k, p)
end for
end if
return data
end function

It can easily be verified that the work is still O(nlogn), as the recurrence for
work stays the same. Moreover, it is also clear that only a constant amount of
4

memory is required for this algorithm. However, depth is now back to O(n), as
the permutation process is sequential, and therefore requires total O(n) work and
depth.

3. PARADIS

PARADIS improves upon the existing method parallel in-place radix sort algo-
rithm with 2 new ideas: speculative permutation and distribution-adaptive load
balancing.

3.1. Speculative Permutation. The permutation idea presented in Algorithm 3
is inherently sequential, due to the fact that any one bucket can swap elements
with any other bucket. This results in read-write dependency, which prevents ef-
fective parallelization. Speculative permutation solves this problem by giving each
processor exclusive ownership of multiple contiguous data segments, thus avoiding
read /write conflicts, as can be seen in Figures 1 and 2.

However, there is no longer guarantee that all elements will be permuted correctly
at the end of the permutation phase, as each processor will only be able to swap
with a limited number of elements with each bucket. Thus, a second repair phase
is introduced after permutation to fix any elements not currently in the correct
bucket. In particular, the repair phase starts from the tails of each bucket, and
finds other elements to swap into place such that both elements are now placed
correctly.

The pseudocode is presented below. Note that the heads or tails are now pro-
cessor specific, as each processor will be assigned several contiguous stripes of data.

5

Algorithm 4 PARADIS algorithm

function pPARADIS(data,l, k, p)
if number of elements in data = 1 then
return data

end if
histogram = BUILDHISTOGRAM(data, l, k, p)
heads = [0]

tails = [histogram][0]]
for i from 1 to 9 do
heads[i] = heads[i — 1] + histogram|i — 1]
tails[i] = tails[i — 1] + histogram]i]
end for
PARADIS_PERMUTE(d, [, k, p, heads, tails)
for bucket in buckets do
PARADIS_REPAIR(d, [, k, p, bucket_start, bucket_end)
end for
if | <k —1 then
for ¢ from 1 to 9 do
d = data from bucket|i]
PARADIS(d,l + 1, k,p)
end for
end if
return data
end function

Algorithm 5 PARADIS-permute

function PARADIS_PERMUTE(data, l, k, p, heads, tails)
for each processor do
for ¢ from 0 to 9 do
head = heads|i]
while dohead < tails|i]
v = datalhead)]
b = correct bucket of v
while b! = i and heads[b] < tails[b] do
Swap values of v and d[heads|b]]
heads[b] + +
b = correct bucket of v
end while
if k == then
datalhead] = datalheads]i]]
data[headsli]] = v
heads[i]+ =1
else
datalhead] = v
end if
head+ =1
end while
end for
end for 6
end function

Algorithm 6 PARADIS-repair

function PARADIS_REPAIR(data, l, k, p, heads, tails, 1)
tail = tails|i]
for e doach processor
head = headsli]
while head < tails[i] and head < tail do
v = datalhead]
head + +
bv = correct bucket of v
if b! =7 then
while head < tail do
tail — —
w = data[tail]
bw = correct bucket of w
if bw == then
datalhead — 1] = w
dataltail] = v
break
end if
end while
end if
end while
end for
end function

3.2. Distribution-Adaptive Load Balancing. Distribution-adaptive load bal-
ancing is an approach to spread the work of recursive calls to PARADIS evenly. As
the number of elements in each bucket can vary greatly depending on the data, we
can modify the assignment of buckets to different processors in an intelligent way
so as to distribute work evenly among the processors.

While it doesn’t improve the average-case runtime of the algorithm, it does
provide marginal improvement on the worst case runtime. For this paper, I have
not implemented or tested the effects of load balancing, though more information
about the load balancing method can be found in [1].

4. PRELIMINARY RESULTS AND ANALYSIS

All the following experiments were performed on a MacBook Pro with a 2.7 GHz
i5 dual-core processor and 8 GB ram, and the implementation is in Python.

4.1. Experiment Results. First, we can see from Figure 3 that MSD radix sort
in general does better than naive radix sort, which is expected due to the divide
and conquer nature of MSD radix sort. Next, we can see that in-place radix sort
does worse than both the out-of-place algorithms; this can perhaps be attributed
to the permutations and constant swaps, resulting in a longer runtime, albeit with
lower memory usage. Finally, PARADIS performs a bit better than the standard in-
place radix sort implementation, though still worse than the sequential out-of-place
algorithms.

w | o W

f) M o i i
gho M ghi ! gz M ghs
&t gt g2 gt
(a) Before: original data in stripes for each bucket for processor 1: {d[M}]|0 < i < 4}
'y pt'y phly pt,
| |
! stripe full
fist fall |
i il. b i i
16 0
gho AJD ghi M gh2 A/IZ gh3 %
gto g [17] g3
(b) First failure due to insufficient capacity for the black key: C3 =2 <32, C}(3) =3
ph, ph, ph',; phi,
pti, Pt ptl, ptl,
l< 128 M, "o M UM 1
gho Mo gk ! gh gh3
gro gt g2 43

(c) After: almost permuted by PARADIS Permute: ph!, Vi marking the first wrong elements

FIGURE 2. Before and after PARADIS-permute. We can see that
after permutation, there are still some elements not in the correct
buckets, which is why the repair phase is necessary.

There could be many reasons why the experiments show PARADIS as only
marginally better. First, I used Python, which unfortunately does not lend itself
very well to parallel computations. Next, running the algorithms on a single laptop
machine with small amounts of data often lead to relatively large overhead costs,
which dampens the benefits from parallelization. Finally, I haven’t yet implemented
load balancing, which could further optimize the performance.

More complete results of PARADIS can be found in [1]; indeed, the speedups in
the experiments there are quite drastic for PARADIS, often reaching 2 to 3 times
faster than competing radix sort algorithms; our experiments unfortunately have
not been able to replicate the results to the same extent.

4.2. Analysis. The runtime complexity is shown in [1] to have an upper bound
of O(n(% + w)), where w is the largest fraction of elements repaired by a single

processor. It is also shown that w is bounded above by %. Given random data,
w is generally very small, and therefore, the runtime complexity of the PARADIS
algorithm achieves close to the optimal O().

Moreover, the only additional work done by PARADIS as compared to the reg-
ular in-place radix sort algorithm is from paradis-repair, which requires O(wn) =
O(n) work. Therefore, the total amount of work done at each step of the recursion
is O(n), so total work is still O(nlogn). Similarly, depth is also O(logn). Though
the theoretical work and depth of PARADIS remain the same as compared to the

8

Runtime Comparison of Radix Sort Implementations

8
6
2
o 1 1 [|

Dataset 1 Dataset 2

Elapsed Time (s)

M Naive Radix Sort W MSD Radix Sort ~ M In-Place Radix Sort ™ PARADIS

Dataset 3 Dataset 4

140

120

Elapsed Time (s)
B (o2} 00 o
o o o o

N
o

o

M Naive Radix Sort B MSD Radix Sort ~ MIn-Place Radix Sort M PARADIS

FiGUurRE 3. Comparison of runtimes between the different radix
sort methods. Here, datasets 1 and 2 consist of 1 million randomly
generated numbers up to 4 digits and 16 digits, respectively, se-
lected uniformly. Datasets 3 and 4 consist of 10 million randomly
generated numbers up to 4 digits and 16 digits, respectively, se-
lected uniformly.

regular in-place algorithm, parallelizing the permutation process is helpful in low-
ering the constant factor, and provides many practical benefits. Favorable results
are shown in [1], even though the preliminary results achieved here did not reveal
the same trends.

A final important aspect to consider is that no communication between proces-
sors is required for PARADIS, which is greatly helpful in terms of runtime efficiency.

5. CONCLUSION

In this paper, we have explored radix sort along with its in-place variant, as
well as many parallelization ideas that can be applied to radix sort to increase its
runtime efficiency. Moreover, the PARADIS algorithm, which introduces the novel
concept of speculative permutation, was explored.

Though the preliminary results were not able to match the trends shown in the
original paper, the limited technological capabilities of a single laptop computer
sorting on small amounts of data in Python likely limits any potential gains from
parallelizing radix sort. Nonetheless, the results found in [1] are certainly promising,
and demonstrate the efficiency of PARADIS. Furthermore, there is no doubt that
parallelization can indeed improve performance of radix sort, allowing it to remain
competitive with other sorting methods.

9

(1]

2]

(3]
(4]
(5]

[6]

REFERENCES

Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Kulandaisamy,
Ruchir Puri PARADIS: An Efficient Parallel Algorithm for In-Place Radix Sort
http://www.vldb.org/pvldb/vol8/p1518-cho.pdf.

J. Harkins, T. El-Ghazawi, E. El-Araby, and M. Huang. A Novel Parallel Approach of Radix
Sort with Bucket Partition Preprocess. In Proc. IEEE Conf. on Embedded Software and Sys-
tems, pages 989994, 2012.

S.-J. Lee, M. Jeon, D. Kim, and A. Sohn. Partitioned parallel radix sort. J. Parallel Distrib.
Comput., 62(4):656668, Apr. 2002.

D. Jimenez-Gonzalez, J. J. Navarro, and J.-L. Larrba-Pey. Fast parallel in-memory 64-bit
sorting. In Proc. Int. Conf. on Supercomputing, pages 114122, 2001.

Radix Sort

https://en.wikipedia.org/wiki/Radix_sort

Comparison sort

https://en.wikipedia.org/wiki/Comparison_sort

10

