
Parallel Auction Algorithm for Linear Assignment
Problem

Xin Jin

1 Introduction

The (linear) assignment problem is one of classic combinatorial optimization problems, first ap-
pearing in the studies on matching problems in the 1920s. Since it closely relates to a wide range
of important problems, such as min-cost network flow, weighted matching problem, and linear
programming, it accumulates a large amount of literature in history.

Despite its difficulty, the problem can be described rather simply: given n persons and n items,
and each person-item pair is associated with a payoff, then what is the optimal assignment with
respect to the total payoff in which everyone gets exactly one item.1 The payoffs can be summarized
in a matrix, as illustrated below:

2666664

item 1 item 2 item 3

person 1 7 9 8

person 2 8 5 7

person 3 1 6 6

3777775
In this particular example, the optimal assignment is apparent: person 1 gets item 2, person 2 gets
item 1, and person 3 gets item 3. Each payoff can also be �1, indicating that some item cannot be
assigned to some of the people.

The long history of improvements of the algorithms on the assignment problem originated from
the 1940s with complexityO.2nn2/. The most famous one among these algorithms is the Hungar-
ian algorithm, proposed in Kuhn [5]. It has time complexityO.n4/, and is later improved toO.n3/.

1Most of the literature uses the equivalent min-cost version of the problem. But since the “auction” setting only
makes sense with the objective of maximizing payoffs, we instead use max-payoff version.

1

There have been over 10 algorithms that are similar in performances (and which one is the best de-
pends on specific situations) these days, and active studies are still on-going.

In this paper, we analyze the auction algorithm, and discuss a couple ways to parallelize it. We
then give empirical performance results on a C++ implementation. In addition, we also make some
preliminary analysis on possible distributed implementations on a Spark-like configuration.

2 Mathematical Formulation

Suppose the payoffs are given by a matrix A 2 NRn�n, where NR D R [f�1g and Aij denote the
payoff of item j to person i . The purpose of allowing Aij to be �1 is to capture that some assign-
ment is not feasible. The linear assignment problem can then be written as an integer programming
problem

max
X2Rn�n

nX
iD1

X
jD1

AijXij (2.1)

subject to
nX
iD1

Xij D 1; i D 1; 2; : : : ; n (2.2)

nX
jD1

Xij D 1; j D 1; 2; : : : ; n: (2.3)

Xij 2 f0; 1g: (2.4)

The constraints are simply saying that the argument matrix X must be a permutation matrix. Since
the constraint matrices are totally unimodular, the integer programming problem (2.1) is equivalent
to its linear programming relaxation:2

max
X2Rn�n

nX
iD1

X
jD1

AijXij (2.5)

subject to
nX
iD1

Xij D 1; i D 1; 2; : : : ; n (2.6)

nX
jD1

Xij D 1; j D 1; 2; : : : ; n: (2.7)

Xij � 0: (2.8)

2See, for instance, Papadimitriou and Steiglitz [6].

2

As this is a linear programming problem, standard LP algorithms can be used to solve it reasonably
efficiently. However, the features of this problem enable us to find more efficient algorithms.

Let �i and pi denote the multipliers (or dual variables) associated to the constraints, we have
the dual problem:

min
�i ;pi

nX
iD1

�i C

nX
iD1

pi (2.9)

subject to �i C pi � Aij ; i; j D 1; 2; : : : ; n: (2.10)

The complementary slackness is

Xij .Aij � �i � pj / D 0; i; j D 1; 2; : : : ; n: (2.11)

IfX� is feasible for the primal and f�i ; pig are feasible for the dual and they together satisfy (2.11),
then they must be optimal respectively for the primal and the dual.

There are various algorithms that exploit either the primal or the dual alone. Some algorithms
also deal with both formulations together, e.g., the famous Hungarian algorithm proposed in Kuhn
[5]. The auction algorithm studied in this paper was proposed by Bertsekas [1], and approaches
the problem via a slightly different but equivalent dual formulation:

min
pj

8<:
nX
iD1

max
j

˚
Aij � pj

	
C

nX
jD1

pj

9=; (2.12)

As we will see, the variables pj ’s have very intuitive explanations, and will be called the prices
in the rest of the paper.

Proposition 2.1. Let fpj g be a set of prices, and f.i; ki/g a feasible assignment for the dual problem
(2.9), i.e., item ki is assigned to person i . If fpj g and f.i; ki/g satisfy the complementary slackness
condition

Aiki
� pki

D max
j
fAij � pj g; (2.13)

then fpj g is optimal for (2.12) and f.i; ki/g is optimal for (2.9). Moreover, the optimal values of
the two problems are the same.

Proof. Let . And let fpj g be any specification of prices. We have

Aiki
�
�
Aiki
� pki

�
C pki

� max
j

˚
Aij � pj

	
C pki

:

3

Hence the total payoff for the assignment f.i; ki/g satisfies

nX
iD1

Aiki
�

nX
iD1

max
j

˚
Aij � pj

	
C

nX
jD1

pj :

That is, any value of the objective function of (2.12) is at least as large as the optimal value of (2.9).
Now suppose fpj g and f.i; ki/g satisfy (2.13). Then

nX
iD1

Aiki
D

nX
iD1

�
Aiki
� pki

�
C

nX
jD1

pj D

nX
iD1

max
j

˚
Aij � pj

	
C

nX
jD1

pj :

It then follows that fpj g and f.i; ki/g are respectively optimal for (2.12) and (2.9), and the
optimal values of the two problems are equal.

In terms of asymptotic complexity, auction algorithm is pseudo-polynomial in that it also de-
pends on the largest element of the payoff matrix, and thus seems inferior compared to the O.n3/
implementation of Hungarian algorithm. However, auction algorithm has a very intuitive analogy
(the real world auction bidding), is a lot easier to implement, and in random experiments studies
have shown that it often outperforms the Hungarian algorithm; more importantly, in the world of
parallel algorithms, auction algorithm is rather easy to parallelize. We will discuss the details in
the next section.

3 Auction Algorithm

Due to the analogy to the auction setting, we shall call the persons bidders. The formulation (2.12)
gives an easy heurstic (sequential) algorithm as follows:

1. Start with a set U of all bidders. U denotes the set of all unassigned bidders. We also
maintain a set of prices which are initialized to all 0, and any structure that stores the current
tentative (partial) assignment.

2. Pick any bidder i fromU . Search for the item j that gives her the highest net payoffAij �pj ,
and also an item k that gives her the second highest net payoff.

3. The price pj of item j is updated to be pj pj C
�
Aij � pj

�
� .Aik � pk/. This update

simply says that pj is raised to the level at which bidder i is different (in terms of net payoff)
bewteen item j and item k, i.e., the updated prices satisfy Aij � pj D Aik � pk.

4. Now assign item j to bidder i . If item j was previously assigned to another bidder s, then
remove that assignment and add s to U .

4

5. If U becomes empty, the algorithm is over; otherwise, go back to Step (2).

As we can see, this algorithm resembles the procedure of English auction with no reserve prices
(which is roughly equivalent to a second-price auction):

� The prices start from 0.

� In each round, one person makes a bid that is higher than the current highest bid by someone
else, and tentatively gets that item. The updated price in Step (3) is exactly the new bid here.

� At the end of the auction, the person with the highest bid for some item gets that item.

We called the above algorithm only heuristic because it turns out that it is flawed: it may happen
that several persons “kick” each other out (turned back to U) in a cycle, making the loop indefinite;
the situation occurs when these persons’ highest net payoffs are all equal to the second highest
net payoffs, which then doesn’t actually increase the prices. One resolution to this is to find a
approximately optimal solution: instead of the original updating rule:

pj pj C
�
Aij � pj

�
� .Aik � pk/ ;

we raise prices by
pj pj C

�
Aij � pj

�
� .Aik � pk/C �;

where � is some positive real number that is pre-chosen. The idea is that, a cycle occurs when
prices do not increase at all starting from some period, so by making updated prices always strictly
larger, we guarantee that a stagnation never happens. The final assignment found by this modified
algorithm can generate total payoff at most n� apart from the optimal assignment. In most realistic
applications, payoffs are integral, and thus if we take � < 1=n, the near-optimal assignment in fact
must be optimal.

4 Parallel Version

In this section, we describe twomain ways to parallelize the auction algorithm. In the literature, they
are called Gauss-Seidel version and Jacobi version, in analogy to the iterative methods to solving
linear system of equations. Finally, we compare the emprical results of these two algorithms as well
as a hybrid version of the two. In what follows, we let p denote the number of CPU cores we use.

4.1 Gauss-Seidel Version

The most natural way to make the auction algorithm parallel is to parallelize Step (2). The search
for the best item for some bidder on an iteration can be performed by multiple threads searching in

5

partitions of the items.
The biggest drawback is that, after the separate searches, the search results have to be merged

in some way to give the overall best item and second-best item. This synchronization cost turns out
to be quite significant in practice, bottlenecking the performance of the whole algorithm.

4.2 Jacobi Version

Instead of different threads searching over different partitions, we can also parallelize the algorithm
by searching for the bids of multiple bidders at the same time. Clearly this reduces the number of
iterations up to p times. It may happen that two or more bidders make bids for the same item on one
iteration; in this case, we can only make one of them the tentative owner of the item. In practice, the
reduction in iterations are rather unpredictable, but on average it’s quite effective. Some literature
calls this parallel algorithm the block Gauss-Seidel, and instead call an algorithm that updates all
the unassigned bidders on one iteration the Jacobi version. But in this paper, we shall call it Jacobi,
since it’s more suitable for machines with limited number of CPU cores. Essentially, these two
different Jacobi algorithsm are very similar, and if we use a queue to update unassigned bidders
then they are exactly the same.

There is also one synchronization stage at the end of every iteration: we have to make sure
several bidders bidding for the same item do not conflict, since the prices used to search for the best
item may be outdated. Interestingly, this kind of synchronization can actually be avoided, resulting
in a asynchronous version of the Jacobi algorithm. That is, one can prove that, even with outdated
prices during the search, updating the price as long as the new price is higher than the orignal (but
latest) price is still correct. The proof and implementation details are a bit tricky. Full details of the
proof can be found in [3], and the URL of the code can be found in the next section.

4.3 Complexity

Let’s first consider the sequential version. The time complexity turns out to be rather difficult to
obtain. Bertsekas [1] gave a worst-case performance of O.n3/ C O.Cn2/ (for fully dense payoff
matrix, i.e., no �1), where C is the magnitude of the largest element in the payoff matrix. This
looks pessimistic compared to the Hungarian algorithm, but in practice it’s often more efficient,
suggesting that worst-case bound in this case isn’t a very good indicator of performance. As we
will see below, this is more so in the parallel world. Schwartz [7] analyzed the average complexity
by making a very strong assumption on the disitributional properties; he estimates the expected
performance to be O.n2 logn/ (under the strong assumption).

For the parallel algorithms, the Gauss-Seidel version apparently reduces the search cost by a
factor of p, with only an additional “minor” (unfortunately it’s not minor in practice, as we shall

6

see) cost ofO.p/ to merge the results. The number of iterations is exactly the same as the sequential
version.

The search cost on one iteration in the Jacobi version is the same as the sequential version.
Moreover, the synchronization cost is nearly 0, as we can directly write the new prices into memory
(under protection of mutex) without a merge stage. So the only difference (advantage) of the Jacobi
version is the reduced number of iterations. Hence theorectically the speedup is simply the ratio
between numbers of iterations. Asmentioned previously, depending the specific graph structure, the
reduction in the number of iterations are rather unpredictable (though obviously the upper bound is
p). So our analysis would mainly rely on the empirical results, as in most other literature analyzing
the auction algorithm.

4.4 Implementation and Empirical Analysis

I implemented a multithreaded C++ program for a general hybrid algorithm, that is, one can search
bids in partitions (Gauss-Seidel component) as well as update multiple bidders at the same time
(Jacobi component). And the Jacobi part uses the asynchronous idea mentioned above. The pro-
gram can deal with arbitrary integral payoff specifications (not necessarily dense) as long as there
exists at least one feasible assignment. The source code can be found on https://github.com/

xin-jin/pauc.
To compare performances, we generate fully dense graphs with different size n and magnitude

C of largest element. Given a choice of C , each payoff is drawn uniformly from 1 to C . For the
following results, all C are taken to be 1000. So I only list the values of n in the table. Time unit
is second. s denotes the number of unassigned bidders to update each iteration, and b denotes the
number of partitions to search for the best and the second best net payoffs.

s b n D 1000 n D 2000 n D 3000 n D 4000 n D 5000

1 1 0:64 3:90 28:63 170:63 205:53

4 1 0:55 2:79 16:92 96:20 111:63

2 2 1:24 6:10 38:97 224:25 233:76

1 4 2:09 10:69 74:59 386:93 424:84

As we see from the empirical performances, the Jacobi version does effectively reduces the
computation time. However, the Gauss-Seidel part, no matter alone or combined with a Jacobi
component, actually slows down the program. I performed profiling analysis with perf, and it

7

https://github.com/xin-jin/pauc
https://github.com/xin-jin/pauc

shows that (see (4.1)), a roughly 45.88% of time is spent in the merge and mutex/lock of the syn-
chronization stage! This bad performance may also be due to implementation details, but at this
point we list a number of the main factors for the huge effect of synchronization:

Figure 4.1: Perf

1. Even though the algorithm overall is not very fast (in the order of O.n3/), the sequential
search cost on each iteration is not large: O.n/. For today’s computers, one iteration may
only take a very short amount of time, so any slightly additional cost (those costs listed below)
for every iteration may appear to be significant.

2. At the beginning of the search, the driver thread has to dispatch the tasks to the worker threads
one-by-one.

3. The kernel time of dealing with multiple mutex locks and wake-ups (I use condition vari-
ables).

4. Similar to Reason (2), the synchronization stage has to wait for the worker threads to finish,
and checking states happens sequentially.

The following table gives an empirical investigation of the reduction of iterations. We used the
same matrices as above.

s b n D 1000 n D 2000 n D 3000 n D 4000 n D 5000

1 1 56797 308600 2245420 12347619 13478860

4 1 40481 147538 558954 3629568 3372102

Interestingly, for s D 4 and b D 1, the number of iterations for n D 5000 is in fact smaller than
that for n D 4000, confirming that the number of iterations are highly unpredictable.

5 Distributed Version

The paper mainly focuses on the parallel algorithm, so here we only provide a very preliminary
analysis of the potential distributed implementation. Before all iterations, we have to transfer the

8

payoff matrix to worker machines. For the Gauss-Seidel version, this requires p one-to-one com-
munication of data of sizeO.n2=p/ (again we assume a fully dense matrix). If the whole matrix is
originally stored on a driver machine, then the communication cost of this isO.n2/. For the Jacobi
version, it requires a one-to-all broadcast of the whole n � n payoff matrix.

Synchronization cost is similar to that for the Gauss-Seidel parallel algorithm. However, it’s dif-
ferent for the Jacobi version, because now we cannot directly write the updated price into memory.
After each iteration, every machine needs to transfer the new bid to the driver, the driver use these
bids to update the price vector, and one-to-all broadcast the updated price vector to all machines. As
a result, the communication cost in the synchronization stage for each iteration isO.n/; depending
on the particular distributed machanism, this may be reduced to O.p/, since we essentially only
have to change at most p of the prices. The Gauss-Seidel version also needs to transfer the updated
price, but only one price needs to be updated.

6 Conclusion

In this paper, we presented the mathematical formulation of the linear assignment problem. We
analyzed the classical auction algorithm as well as several parallel versions of it, with comparisons
from a multithreaded C++ implementation. In the end, we also briefly considered the distributed
implementations.

References

[1] Bertsekas, Dimitri P. "A new algorithm for the assignment problem." Mathematical Program-
ming 21.1 (1981): 152-171.

[2] Bertsekas, Dimitri P. Linear network optimization: algorithms and codes. MIT Press, 1991.

[3] Bertsekas, Dimitri P., and David A. Castanon. "Parallel synchronous and asynchronous imple-
mentations of the auction algorithm." Parallel Computing 17.6 (1991): 707-732.

[4] Burkard, Rainer E., Mauro Dell’Amico, and Silvano Martello. Assignment Problems, Revised
Reprint. Siam, 2009.

[5] Kuhn, HaroldW. "The Hungarianmethod for the assignment problem." Naval research logistics
quarterly 2.1-2 (1955): 83-97.

[6] Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1982.

9

[7] Schwartz, B. L. "A computational analysis of the auction algorithm." European journal of op-
erational research 74.1 (1994): 161-169.

10

	1 Introduction
	2 Mathematical Formulation
	3 Auction Algorithm
	4 Parallel Version
	4.1 Gauss-Seidel Version
	4.2 Jacobi Version
	4.3 Complexity
	4.4 Implementation and Empirical Analysis

	5 Distributed Version
	6 Conclusion

