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Abstract

We describe a distributed algorithm for calculating the CUR decompo-
sition of a sparse matrix. Using p machines, with m rows and n columns,
we analyze the theoretical run-time of both algorithms. Further, we com-
pare the use of CUR decomposition for bi-clustering algorithms which
originally rely on the SVD decomposition. We find that using a CUR de-
composition speeds up the run-time of a bi-clustering algorithm by roughly
a factor of 2x on sample data sets with a consensus score of roughly 0.7
when compared to using SVD. In certain settings, this may be an accept-
able penalty for the speed increase.

1 Introduction

A matrix decomposition is a factorization of a matrix into a product of smaller
matrices. There are many different matrix decompositions, and each has various
applications. In our data analysis, the data matrix is a matrix with m rows and
n columns, where m represents a sample of item-entities (e.g. people) and n
represents another sample of item-entities (e.g. movies) related to each other
with specific weights (e.g. ratings.) For various machine learning algorithms,
matrix decomposition can be used on such a data matrix in order to cluster, or
group, the samples by a measure of similarity.

2 Background of CUR

The CUR matrix decomposition is a low-rank approximation of a given matrix
A, made up of three matrices: C, U and R. When multiplied together, these
three matrices approximate the original matrix A. CUR decompositions are
modeled after SVD decompositions and carry different benefits and costs when
compared to the SVD decomposition.



Formally, for a CUR decomposition of matrix A, the C' matrix is made up of
actual columns of the original matrix. Likewise, the R matrix is made of up
actual rows. This gives the added benefit that matrices C' and R represent
actual observations from the data, unlike the SVD decomposition.! Lastly, the
U matrix is then constructed in such a way that the product of C, U and R
closely approximates the original matrix A.

Beyond interpret-ability, another benefit of the CUR decomposition is the stor-
age space. Since C' and R represent actual columns and rows of the original
matrix A, these matrices will also be sparse (given that A is sparse). Further,
though the U matrix is dense, it is quite small, and thus does not require large
storage space.? This provides an additional benefit over SVD decompositions,
as the U and V matrices are often large and very dense, while ¥ is small and
diagonal. Figure 1 and Figure 2 provide visual representations for both the SVD
and CUR decomposition, respectively.
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Figure 1: Example of SVD Matrix Decomposition
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Figure 2: Example of CUR Matrix Decomposition

IThere are other CUR decompositions that use right and left singular values for the C' and
R matrix. We will not be analyzing those in this paper.

2The U matrix is r-by-c, where r and c are often a small numbers in relation to the
dimension of the original matrix.



3 CUR Algorithms

Over the past few years, there have been various serial algorithms proposed for
CUR matrix decompositions. For our analysis, we chose to focus on one that
provides a fast run-time while still providing a good approximation to the SVD
decomposition. For instance, some CUR algorithms provide better accuracy by
constructing the C' and R matrices in a different procedure, though pay for this
in terms of run-time. The algorithm we describe and analyze below was proposed
in a paper by Petros Drineas, Ravi Kannan and Michael W. Mahoney in 2006
[1]. This paper presents both a linear-time CUR algorithm (scales linearly) and
a constant-time CUR algorithm. We chose the linear-time CUR algorithm for
our analysis and implementation. It makes a better approximation but requires
greater computation.

3.1 Serial CUR
3.1.1 Algorithm/Implementation of CUR

Below is the linear-time algorithm described by Drineas, Kannan and Mahoney
from their 2006 paper [1].

Data: A€ R™" r ¢, k€ Zt suchthat 1 <r<m,1<c<n,and 1<
k < min(r, c), {p;};* such that p; > 0 and ¥, p; = 1, and {g;}7
such that ¢; > 0 and ¥7_; ¢; = 1.

Result: C, U and R matrices

for t = 1 to ¢ do

Pick j; € {1,....n} with Pr[j; = a] = ¢o, « = 1,....n

Set C) = AU / NG

end

for t =1 tor do

Pick i; € {1,...,n} with Pr[i; = a] = po, & = 1,...,n

Set Ry = Agi,) / /TDjis

Set Y1) = Cy,) / /TDji

end

Compute CTC and its SVD. Say CTC = $5_, o2 (C)y'y!"

T
X =3 vy
U=XYT

Algorithm 1: Serial CUR Algorithm

3.1.2 Analysis of Run Time

For the analysis of this algorithm, we choose to focus on the construction of
the C' and R matrices.® Assume we have a sparse matrix A which has m rows,
n columns and b non-zero entries. We will consider A to be sparse. Further,

3This part of the algorithm provides opportunity for distribution amongst a cluster of
machines.



assume r, ¢, and k are constants as described above in Algorithm 1.

Though the algorithm above assumes the user is already provided the proba-
bility measures for both the columns and rows of A, this may not be the case.
Thus, it is important to also analyze the run-time to develop these figures. The
probabilities are based off the L2 norm of each column and row. The L2 norm

is calculated as:
|z| = \ E’ﬁzlxi

For each column c;, we calculate its L2 norm. A similar procedure is done for
each row r;. Next, we must loop through each c; again to divide its L2 norm
by the Frobenius norm, calculated as:

IAIF = S35, A%

This provides our probability measure for each column and row of the matrix.
This procedures takes O(mn), as calculating the Frobenius, as well as the L2
norm of columns and L2 norm of the rows, each take O(mn).

Given the probability measures for both the columns and rows of A, we must
sample ¢ columns and r rows. To do this, we convert our probability measures
for each column into a cumulative sum. We first draw ¢ random numbers be-
tween 0 and 1, and, using a binary-search, determine the corresponding column
of A to which the random number is associated with. Lastly, we must scale each
number of the selected column. This process takes O(n + clogn + ¢n), or more
simply, O(cn), due to the scaling procedure. A similar analysis shows that the
run-time for sampling r rows from A takes O(rm).

As discussed above, the remainder of the algorithm does not provide significant
opportunity to distribute. Thus, we have chosen to not analyze the run-time.

3.2 Distributed CUR
3.2.1 Algorithm/Implementation of CUR

From our analysis above for the Serial CUR algorithm, it is clear there are ar-
eas of the algorithm which we can improve from a run-time perspective using
distributed computing. The following is our proposed distributed algorithm for
CUR.4

40ur algorithm does not assume probability measures have been provided to the user.



Data: A € R™*", provided in coordinate form (i.e. (x, y, v)) with b
non-zero entries, 7, ¢, k € ZT such that 1 <r <m, 1 <c < n,
and 1 < k < min(r, ¢), and p machines. Note, a d subscript (i.e.
xq) implies = is an RDD.

Result: C, U and R matrices

R, = partition of A by rows, with key-value pairs = (z, (y, v))

Cy = partition of A by columns, with key-value pairs = (y, (x, v))

Compute RN, as reduce among keys of Ry

Compute C' Ny as reduce among keys of Cy

Compute T as reduce of RNy

Compute RP; probability measures of RNy with T as scaling factor

Compute C P, probability measures of C Ny with T as scaling factor

Sample r rows locally from RP,; and collect data

Sample ¢ columns locally from C'P; and collect data

Follow Serial CUR Algorithm to compute U
Algorithm 2: Proposed Distributed CUR, Algorithm

3.2.2 Analysis of Run Time

Similar to Serial CUR, for the analysis of this algorithm, we choose to focus on
the construction of the C and R matrices. We again assume we have a sparse
matrix A which has m rows, n columns and b non-zero entries. We will consider
A to be sparse. Further, assume r, ¢, and k are constants as described above in
Algorithm 2.

First, the algorithm calls to duplicate the A matrix coordinate data, and par-
tition one by columns and the other by rows.® This partition will require two
all-to-all communications, each with a potential cost of O(mn). However, as
noted in the assumptions, there are b non-zero entries, so we can be more pre-
cise and note the cost at O(b). By paying a potentially high up-front cost to
move the data, we will save ourselves multiple all-to-all communications in sub-
sequent steps.

Next, we compute the column and row norms. This is similar to our L2 calcula-
tion in the Serial CUR algorithm. However, since we have two partitioned data
sets, one by rows and the other by columns, this becomes an embarrassingly
parallel calculation. There is no required communication, and the run-time is
calculated as the last reducer to finish. In this case, this is determined by the
row or column with most non-zero entries. Given this is a sparse matrix, we
assume this cost will be small.

After calculating each column and row L2 norm, we must calculate the Frobe-
nius norm of A. While calculating the L2 norm of each column and row, we
also calculate the sum of each entry squared. Thus, for a given key r;, our RNy

5This is not an uncommon practice, and is implemented in other distributed algorithms.



contains:

(o (/5545 530045

Therefore, by reducing the RNy, we can also calculate the Frobenius norm.
This reduce will require an all-to-one communication. Here, we take advantage
of the tree pattern, which says at each step i, 2 machines communicate with
27 other machines. Since we are only sending a constant amount of numbers
(in this case, just one number) between each machine, the computation cost is
O(p) and the communication time is O(logp).

To calculate each column and row’s probability measure, we must collect each
column and row norm, and divide it by the Frobenius norm, or T'. This requires
an all-to-1 communication. Again, we will take advantage of the tree pattern.
Once we have all of the norms located on the driver, the simple division is as-
sumed to be O(1).

With the probability measures calculated, we can now sample the ¢ columns
and r rows to create C and R matrices. Similarly to the Serial CUR algorithm,
we calculate the cumulative sum, and draw ¢ random numbers between 0 and
1. Then, using a binary-search, we determine the corresponding column of A
associated with each random number. This process takes O(n + clogn). Since
¢ is assumed to be a small number, we report this as O(n). A similar analysis
shows the run-time for sampling r rows is O(m).

Finally, we must create our C' and R matrices. We broadcast the selected
columns, or ¢, and selected rows, r, to each machine. Fach column or row de-
termines if it has been selected, and if so, is communicated back to the driver.
The initial broadcast is an all-to-one communication, with computation cost of
O((c+r)p) and communication time of O((c+ r)logp). To collect the selected
rows and columns, we need to grab data from at most r + ¢ machines. We
can still implement a tree pattern of communication, but it will involve less
machines. This will resemble an all-to-one communication, with a computation
cost of O(max(m,n)(r+c)) and communication time of O(maz(m, n)log(r+c)).

Lastly, with C' and R now stored locally, we follow the Serial CUR Algorithm
to compute U.

3.2.3 Benefits of Duplicating and Partitioning Data

The up-front cost paid for duplicating and partitioning the data is easily out-
weighed by the savings farther along the algorithm. Without duplicating and
partitioning, we would need to incur an additional all-to-all communications
with potentially large shuffle sizes. First, computing the C Ny and RNy would
both potentially require an all-to-all communication. There is no guarantee that



rows or columns would be on the same machine, thus calculating any norms
would require moving them to be local first. Second, by duplicating the data,
we can have one partitioned by rows and another partitioned by columns. This
allows us to easily process calculations for each in a efficient manner without
restructuring the data each time. Further, since we assume A is sparse, the
increase in storage size is assumed to be small, and thus not a huge cost.

4 Applications of CUR: Bi-clustering

4.1 Introduction to Bi-Clustering

Bi-clustering was initially developed from an applications perspective for iden-
tifying structure in DNA microarray data. In this context, the search is for
groups of genes (“marker genes”) that identify certain sets of conditions (e.g.
tumor types). The concept of bi-clustering is to simultaneously cluster the genes
and tumor samples so as to let the data determine which genes expressed most
prominently with which tumors and there by group both genes and tumors si-
multaneously. In the context of movie ratings, this might be seen as looking for
movie groupings (e.g. “playlists”) that target a particular “taste profile” (group
of users.) The benefit of this approach (e.g. vs. collaborative filtering) may be
a greater contextual awareness for the user. A playlist might be suggested to
a group of users along with an explanation of their machine-generated “taste
profile”.

4.2 Previous Algorithms Using SVD

There are a number of approaches to achieve the biclustered result. Our ap-
proach in this paper focuses on spectral biclustering in particular - namely, the
use of the SVD as a core component. Specifically we followed the approach as
presented in Kluger, et al. (2003) [3]. The main steps are:

1. Normalize the data
2. Compute the SVD

3. Select best vectors and k-means cluster

1) Normalize the data

Given the sparsity of our data set (MovieLens data), we chose a bistochastic
approach which normalizes the rows and columns of the matrix simultaneously
in an iterative manner so all rows sum to one constant and all columns sum to
a different constant.

2) Compute the SVD



The algorithm only requires the finding of singular vectors (not values) and uses
a randomized approach or ARPACK. Given the randomization already part of
the CUR algorithm, we chose ARPACK which uses the underlying sklearn im-
plementation at sklearn.utils.arpack.svds. The underlying implementation uses
the Lanczos algorithm (an adaptation of power methods) to find the most useful
vectors.

3) Select best vectors and k-means cluster

Select a subset of singular vectors and pick the best subset x out of y total
singular vectors — i.e. that are best approximated according to Euclidean dis-
tance by piecewise constant vectors representing the clusters. The piecewise
constant vectors are found using k-means clustering.* Finally the columns are
rows are projected onto these singular vectors and the result is clustered.

* For the k-means clustering there are options to use k-means++ (default), ran-
domly initialize or initialize with a specific array. We stuck with the k-mean++
default. The number of k-means initializations can be specified as well. For our
experiments thus far, we left the default at 10. Finally, there is also a mini-batch
k-means option which attempts several initializations to determine the best and
the run the full algorithm only once.

4.3 Possible benefits of CUR

A CUR version of the algorithm above focuses on step 2 from Section 4.2 above,
the calculation of the SVD which is the most time consuming step (based on
our observation of repeated runs via DataBricks.) As described in Section 3,
instead of singular vectors (in rotated space), CUR, uses actual rows and columns
attempting to approximate these singular vectors. These rows and columns are
selected via a random algorithm that can run very quickly. We can replace the
CUR for SVD within the biclustering algorithm easily because we only need
the singular vectors (not the singular values). As discussed in Section 3, we
have come up with a distributed approach enabling all the benefits of the CUR
algorithm in a highly scalable form - i.e. when the A matrix (e.g. ratings
matrix) does not fit in memory on a single machine.

4.4 Experiment and Results

In our implementation, we started with an existing implementation of the algo-
rithm above in sklearn.cluster.bicluster.® Then, we modified this algorithm to
use CUR by breaking existing code into sections and parameterizing as sepa-
rate function calls (i.e. inserting “hooks”) according to the 3 primary algorithm
steps above enabling us to effectively replace SVD with CUR. For the baseline

6Specifically, we implemented “SpectralBiclustering”, which is available at: http://scikit-
learn.org/stable/modules/biclustering.html.



serial CUR algorithm we started with an implementation from the Python Ma-
trix Factorization (PyMF)” which uses Drineas, et al. (2006). [1] In particular,
we implemented the linearly scaling CUR. (There is also a constant-time CUR,
which further sacrifices accuracy for scalability.)

For our experiment, we used the MovieLens data. We ran the test on three
different sizes: 100K, 500K and 1M.® We first ran the out of box algorithm in a
serial fashion as a baseline. This was important for both SVD and CUR versions
in order to match the results of our distributed algorithm to be confident we
were producing the same result - e.g. counts per cluster in for SVD (exact) and
CUR (approximate). Although these data sets were known to be sparse (Table
1 below), we also found that they skipped IDs - i.e. the IDs for users and movies
was not consecutive and affected the matrix build. We had to implement a data
preparation stage which effectively re-indexed the data so as to avoid any empty
rows or columns.

H Dataset Users Movies Observations Sparsity Measure H

100K 943 1682 100000 6.30%
500K 3048 3645 502849 4.53%
1M 6040 3706 1000209 4.47%

Table 1: Dimensions of datasets (MovieLens)

All of our code was written in Python, tested locally, and then implemented in
Spark via PySpark where serial was first tested then sections re-implemented in
a distributed fashion.

For each experimental test, we ran with the following fixed parameters:
e Data cluster count: 3 x 3 (users x movies clusters)
e SVD components: 6, best: 3 (defaults)
e CUR components: 24, best: 12

e Machine cluster count: 8 (AWS Memory-optimized) - Spark 8 Node, 270
GB On-demand, Spark 1.6.1 (Hadoop 1), 23.2 GB per machine (1 driver,
8 masters)?

e SVD runs before CUR, using shared memory

"The code is available at: https://pypi.python.org/pypi/PyMF.

8The MovieLens data provides data sets for 100k and 1M. We also created a 500K
row data set by sub-sampling users from the 1M row set. The data is available at:
http://grouplens.org/datasets/movielens/.

9For an 8 node cluster established via Databricks, we observed that it spun up 5 instances
in AWS (Amazon Web Services) and so some nodes were sharing the same machine.



e Spark cluster restarted between runs to clear memory, as well as Databricks
notebook detached /reattached (to clear any local memory)

H Run Dataset SVD Time CUR Time Speed Up Consensus Score H

1 100K 12.444 3.848 3.234 0.716
2 100K 12.537 3.882 3.229 0.740
3 100K 12.653 3.880 3.261 0.710
4 500K 25.916 7.204 3.597 0.674
5 500K 29.925 6.736 4.442 0.793
6 500K 30.781 6.599 4.664 0.657
7 1M 30.670 10.491 2.923 0.733
8 1M 33.532 9.946 3.371 0.750
9 1M 32.754 17.691 1.851 0.698

Table 2: Experimental results on increasing dataset size (MovieLens)

The SVD and CUR times in Table 2 above are in seconds. The Consensus
Score above was calculated via sklearn.metrics.consensus_score using the de-
faults which employ a Jaccard similarity coefficient. The sklearn function takes
4 vectors identifying the rows (users) and columns (movie) cluster memberships
i.e. both the SVD-based cluster result and the CUR-based cluster result. The
similarity is then calculated as size of the intersection of these row/col sets di-
vided by the size of the union of the row/column sets for each cluster. Consider
the two sets as a bipartite graph, the best matching between row/column sets
is found using the “Hungarian algorithm”, a combinatorial optimization algo-
rithm.[2] The final score is then the sum the similarities divided by the size of
the larger set.

Figure 3 and Figure 4 below provide visual representations of the tabular data
above. These were created in R with ggplot and jitter to ensure that points do
not obscure each other.

5 Conclusions

As can be seen in the results above we saw a decreased runtime in a distributed
biclustering context. We gain the benefits of distribution (e.g. working with
data that is not possible to fit on a single machine) and still keep the scalability
and speed benefits of CUR. As discussed, CUR approximates the SVD with an
actual data sample. In the course of our experimentation, we found this was
indeed the case, especially very “tall and skinny” matrices (e.g. by limiting the
total number of rated movies). However, the “curse of dimensionality” plays a
role as the dimension of each observation (e.g. total number of movies rated)
becomes high, making the comparison to SVD more difficult because the the
singular vector is harder to approximate.

10
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6 Further Research Opportunities

We believe there are many opportunities for further research to both improve
the run-time of our proposed Distributed CUR algorithm, and continue to test
CUR as an alternative to SVD for bi-clustering.

Though we believe our proposed algorithm provides a nice outline to improve the
run-time of calculating the CUR decomposition, there are possible bottlenecks.
For instance, to compute the row and column norms, are algorithm performs a
simple serial sum, which is linear in the number of non-zero items. However,
given a very dense row or column (for simplicity, call this r;), this become a
bottleneck to the algorithm.

One potential solution is to distribute ; among more than one machine. For in-
stance, for a given matrix A, if row r; is very dense, while every other row r; only
has 1 entry, then partitioning by rows may not be effective. Thus, we would like
to partition by rows while requiring each partition to contain a roughly equal
number of observations. This may require some prior knowledge about the data
beforehand to determine which rows to partition across multiple machines, and
which to keep intact.

We would also like to continue to test our distributed algorithm on larger data
sets. Though we feel our results reflect the true speed increase of distributed
CUR vs SVD, in practical use today, data sets are much larger in size. Movie-
Lens data offers sample data of larger sizes, including 10M, 20M and 22M. These
would provide us with a nice range of data sets to use.
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