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Introduction 
 

In an upcoming research project, I will be evaluating Collaborative Filtering (CF) 
methods for the prediction of patient medical data. CF refers to an approach for 
estimating unknown entries in a matrix using the known entries. There are a host of 
algorithms which produce this estimate by factoring the matrix into a product of two 
matrices. Apache Spark includes an algorithm known as Alternating Least Squares 
(ALS).  

To understand the core idea of ALS, we will define our incomplete matrix of data as 
M. CF, in general, seeks to express this matrix as the product 

 

   PQ = M̂  (Eq. 1) 
 

where  M̂  then contains estimates for the unknown values of M. The core concept of ALS 
is to fix the entries of either P or Q and solve for the other, noting that the solution is that 
of a convex least-squares optimization problem. For example, the solution for the jth 
column of Q is given by 
 

    
qj = PT SP +λI( )−1

Pmj  (Eq. 2) 

 
where 
 

   

Sii =
1 if Mij  is known

0 otherwise

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

 

 
If the matrix M has dimensions n x m, then P and Q will have dimensions n x k and k x m 
respectively. k is a hyperparameter chosen to estimate the number of “latent factors”; that 
is, the rank of M. 

For my final project, my objective was to deepen my understanding of CF and the 
Spark framework by attempting my own implementation of ALS. I would then compare 
the performance of my own algorithm against the provided one to gain insight into the 
nuances of the implementation. In this report, I will provide an overview of how my 



algorithm is designed and executed in Spark/Scala, as well as example performance data 
when applied to the MovieLens user-movie ratings dataset. 
 
Implementation 
 

In using Spark, it is assumed that the size of M is prohibitive to store on a single 
computer. In my algorithm, which will be called pALS, I assume that k is sufficiently 
small that both P and Q fit on a single machine. In this case, it is possible to perform 
iterative solutions by broadcasting whichever matrix is currently fixed to all worker 
machines. Each worker receives the entries of M corresponding to a single column and 
solves for a single column qj. Equivalently, when solving for P one can first take the 
transpose of Eq. 1, and then each worker receives a single row of M and solves for pi. The 
matrices S and λI are never explicitly created – rather, the computation is performed by 
iterating over the diagonal elements of PTSP. 

pALS is compared against Spark’s ALS implementation (sALS) using the MovieLens 
dataset. The dataset is split randomly into training, validation, and test sets. Each model is 
trained using several combinations of rank, regularization parameter, and number of 
iterations. After training, the Root Mean Squared Error (RMSE) is computed for the 
validation test set. The tests were performed locally on my MacBook Pro. 

 
Results 
 

By the end of the project, I was able to bring pALS to a point where the code executes 
to completion. It is unclear that the algorithm is producing the desired model, as the 
RMSE remains constant for all hyperparameter combinations, whereas the RMSE for 
sALS changes considerably. Notably, pALS runs dramatically slower (see Table 1 for trial 
data). There are several causes for this, as outlined in the following. 

pALS should not be expected to run as quickly because of the distribution of the 
factor matrices P and Q. In particular, in pALS these matrices must be communicated 
across the network (one-to-all) each iteration. It is not necessary for the entire factor 
matrix to be present on a worker machine; those elements which are mapped to zero by 
multiplication with S are never used. sALS takes advantage of this and thus sends smaller 
amounts of data over the network. 

The performance of pALS is limited further due to suboptimal implementation of 
matrix operations. I decided it would be simplest to get the algorithm running using a 
data structure allowing for traditional matrix interactions (for example, individually 
getting and setting elements by row and column index). The available data types for 
working with Spark RDDs and LAPACK (Vectors and Arrays) do not support multi-
dimensional formats and so I opted to build my own. I am sure, however, that my matrix 



class – which requires Scala for-loops – cannot be as efficient as the built in types. Due to 
time constraints, I was unable to refactor the algorithm with better data structures. 
 
Rank Lambda Iterations pALS Training 

Time (ms) 
sALS Training 
Time (ms) 

pALS 
RMSE 

sALS 
RMSE 

8 1 2 18434 4307 3.76 1.34 
8 1 20 158058 6185 3.76 1.36 
8 10 2 15933 3154 3.76 3.76 
8 10 20 154755 5711 3.76 3.76 

12 1 2 22103 3446 3.76 1.34 
12 1 20 207937 7063 3.76 1.36 
12 10 2 23496 3152 3.76 3.76 
12 10 20 206648 6692 3.76 3.76 

Table 1 - Performance of ALS routines on MovieLens dataset. 

Conclusion 
I believe pALS is a good start for a first attempt at writing in Scala and using Spark. 

Clearly, the main factor limiting my ability to complete an optimal algorithm in the 
allotted time is my familiarity with the paradigm for conducting linear algebra in the 
language. I would be very excited to learn more about best practices for handling matrix 
data in this framework. 

Were I to continue on my own, the next logical step would be to establish timing 
benchmarks for the individual segments of the code. Once the most time-consuming steps 
have been identified, it will be straightforward to deduce the computation bottlenecks and 
design code that will eliminate those bottlenecks. 
 
 


