Distributed Language Models Using RNNs

Ting-Po Lee Taman Narayan
tingpol@stanford.edu tamann@stanford.edu

1 Introduction

Language models are a fundamental part of natural language processing. Given the prior words
in a corpus, we’d like to accurately predict what comes next. Any artificial intelligence algorithm
which seeks to understand text and, especially, output coherent text, needs to work off of an accurate
language model.

The main way to train language models today is by running Recurrent Neural Networks (“RNNs”)
on massive corpora of text scraped from books, Wikipedia, newspapers, or even random websites.
As these corpora grow larger, it becomes increasingly impractical to hope to train them on even the
most powerful single machines. Yet the standard training approach involves sequentially feeding in
batches of text into the model, updating weights and hidden states, and then feeding in these new
values along with the next batch of text into the next iteration. Models can take weeks to train.

We explore how to leverage distributed file storage and computation to better train corpora. In
particular, we implement a ground-up RNN in Apache Spark capable of different parallelization ap-
proaches to train a language model based on a corpus assumed to be stored in a Hadoop Distributed
File System (“HDFS”) or similar manner. Our two broad approaches are an embarassingly parallel
approach of training the portions of text stored on different machines in a sequential fashion and a
“sliding windows” approach of feeding in randomly-selected snippets of text in each iteration.

Full code can be found at https://github.com/tblee/rnn_nlp.

2 Background

2.1 Language Models

The objective function of language models is straightforward.

T |V

J = —%Zzym log . (1

t=1 j=1

where T is the number of words in the corpus, |V| is the number of words in the vocabulary, y; ; is
one if the tth word of the corpus is the jth word in the vocabulary and zero otherwise, and g ; is the
predicted probability of that word.

In practice, the metric reported is the perplexity, which is simply 2”.

In the past, the dominant methodlogy for language models was to use n-gram counts. That is, given
the prior n — 1 words, the next prediction would be based on how often each word in the vocabulary
appears after those n — 1 words.

Recently, researchers have found that RNNs have outperformed n-gram models both in accuracy
and scalability.

INPUT (&) OUTPUT (t)

—_— CONTEXT (%)

CONTEXT (s-1)

Figure 1: Information flow in an RNN. The input at the current time step is combined with the
hidden state vector and produces an output prediction as well as an updated hidden state vector.
Image taken from [3].

2.2 Recurrent Neural Networks

The key idea behind Recurrent Neural Networks is that the history of a corpus at any point in time
can be represented by a state vector, which is then updated each time an additional word is seen.

In particular, the way this is most often implemented is with a series of matrix multiplies and non-
linearities.

ht = tanh(W$xt + Whht,1 + bh) (2)
g = softmax(Wohs + b,) 3)

The structure of the RNN lends itself very naturally to language models. Each time step produces
a prediction for the next word which is based on the entire history of the text and incorporates the
actual next word into its state that will predict subsequent words.

Numerous authors have found high degrees of success with RNNs in language models [3, 4]. An
important consideration in getting them to ‘work’ on large corpora is to limit the scope of backprop-
agation. Technically, every prior word contributes to the current hidden state, so the first word in
the corpus would have an influence on the 10,000th prediction. But realistically, updating weights
based on the error for a particular prediction only based on the prior handful of words (e.g. 5-10)
achieves similar results in a substantially more efficient fashion. Mikolov [3] only backpropagates
one word back in time in his seminal paper on language models and still achieves excellent results.

Most relevantly from the point of view of our paper, Karpathy [2] makes a simpler character-level
model with a limited backpropagation window. We use his ideas in our own character-level model
and expand it to include support for parallelism.

3 Incorporating Parallelism

The main barrier to incorporating parallelism into language model training is the importance of
maintaining the relevant hidden state at any point in time, which theoretically should include contri-
butions from words in all previous time steps. Breaking the corpus and separately training different
parts (say, sentences) would reduce the ability of the model to understand context across those breaks
because the initial predictions would not have a meaningful hidden state.

Chelba et al. [1]] highlight another weakness of using distributed models to train language models,
namely the communication and I/O costs of MapReduce. Fortunately, Apache Spark overcomes
many of these fixed costs of MapReduce by avoiding repeated 1/O, keeping data in memory rather
than on disk to the extent practicable, and optimizing broadcasting and All Reduces.

Figure 2: An illustration of sliding windows applied to a corpus. There is a window of length T’
starting with every character.

The most straightforward way to parallelize language model training would simply be to train se-
quential models using the text stored on each machine. After each pass through the data, parameters
could be aligned across machines with an All Reduce. Given enough data per machine, the “breaks”
in the training procedure (from when the text switches machines) would be minor and this approach
would be a direct extension of the sequential pass through the full data. A natural extension, fur-
thermore, would be to evenly chunk up the text between the cores of the machine and train from
there. In the case where paragraphs are generally long, sequentially training on paragraphs could
approximate this approach.

Other mechanisms of splitting up the text in fixed ways, such as separately training sentences, would
be more problematic. The lengths of different sentences vary quite widely, which in an RNN context
can seriously affect training quality and also pose implementation concerns. Trying to solve this
problem by feeding in smaller, fixed chunks of text would be an even worse idea, since splitting
consistently within sentences will hinder the ability of the model to learn complete thoughts.

A related but more promising idea would be to train on shorter chunks of data that overlap with one
another. To make this more concrete, the text on each machine could be divided into overlapping
chunks of T characters each, and those chunks could be trained instead of sequentially passing
through the full data.

There are a few possible advantages to this approach. First, especially after introducing sampling of
these windows in each training iteration, the model could finish each iteration much more quickly.
Second, this approach makes better use of the corpus by presenting each word in multiple different
contexts and therefore hidden states, potentially improving generalizability to new texts. Third, it
could quickly incorporate new information from all parts of the corpus, improving convergence time.

Finally, compared to other methods of training small sequences in parallel in an SGD-like fashion,
sliding windows eliminate the problem of fixed corpus break points. Williams et al. [4] use a
similar sliding-window format in a different context of filtering down a large corpus to make it more
amenable to training. There, the authors observe that randomly sampling sentences to train on would
throw away too much valuable information about how sentences fit together and so instead sample
from “rolling windows” of sentences.

We expect the more sequential models to perform very well due to their richer hidden states and
proven success. However, the proposed benefits from the sampling-from-overlapping-windows ap-
proach may turn out to boost performance in a distributed setting.

4 Algorithmic Analysis

Out of the numerous techniques described above, we focus on a theoretical analysis of 3: sequen-
tially passing through all data on a machine per iteration, training on all sliding windows in an
iteration, and sampling from sliding windows each iteration.

In the following analysis, we define N to be the corpus size in characters, P to be the number of
machines, C' to be the number of cores per machine, L to be the minibatch size when sequential
training, 7" to be the length of each sliding window, H to be the dimenson of the hidden state, and
V' to be the encoding size of each character (here, we use one-hot encoding and so V' is also the
number of unique characters). As in Equation[I] we use .J to refer to the loss function.

4.1 Per Iteration Cost

First, we start with a sequential training of the data on each machine.

Within each machine, the algorithm steadily computes L new hidden states and makes L predictions
before updating the weights via backpropagation through those L time steps. It then moves on to
the next L characters. Note that we use the limited backpropagation trick as described above, since
technically the first word contributes to the gradient coming from every prediction in the text.

The relevant computations are:
Forward Pass (same as Equations [2]and [3)

h,t = tanh(Wxxt + Whhtfl + bh) (4)
9¢ = softmax(Wyoh, +b,) 5)

Backward Pass (let zt(l) = Wyxy + Wyhe—1 + by, and zt(2) = Woh + b,)

i‘t{;) =G~y =0, (©)
aav‘ﬁo =5 n @
s ®)

%;{j =wls? ©)

ai‘t(]f) = g—}ﬁ © (1-h2) =5 (10)
ai—;]fl = wis (11)

;—dg =oal (12)

;;]}h - ot T (13)

27‘]2 - s (14)

The reason that Equations[I2} [T3] and [I4]are evaluated at time ¢ is because via the chain rule, those

gradients will be further updated via 82{; aah‘}v‘ L and so on.

Observe that a naive implementation would therefore be quadratic in the size of the minibatch L

since computing gv‘[],; would require a full pass through the minibatch computing all of the partial

derivatives with respect to each hidden state. This would occur for .J; through Jr..

With a little bit of care, though, all of the gradient updates can occur in a single pass through the

data. The key is the computation in Equation |11|of a(ZtJil . Then, as we pass backwards in time,

we can add this result to that of Equation |9} thereby computing agﬁl + giﬁ: . It’s clear, then, that

as we unroll the time steps, each of the subsequent computations will in fact be computing, e.g.,

ZZL:t aavi]/; |+ and so the gradients will be fully updated by the time we reach the first time step.

The forward pass equations provide the runtime bounds at a single time step: O(V H + H?), where
the dominating term depends on the size of V' compared to the size of H.
Thus, in each minibatch we achieve a cost of O(VHL + H 2L). Overall, given that N words are

distributed over P machines and C clusers per machine, this yields a cost of O(% + Ié }JDV) if the
sequences are split evenly across cores and trained sequentially on each core.

Note that if we instead wanted to train sequentially on the full text per machine (without introducing
the additional C break points per machine), we could then use the C' cores to speed up the vector-
matrix multiplies. The depth of those operations would be bounded by O(log H) from Equation E]
or O(log V') from Equation E] using the tree-based parallel summation procedure, leading to a cost

on C cores ofO(l%2 + log H + % +logV).

That would lead to an overall cost of O(%(Hﬁ2 +log H) + % (Y +1og V).

It is quite straightforward to extend this analysis to a sliding windows-based algorithm. Instead of
proceeding through a sequential block of text in batches of size L, each window is of size T" and is
processed via the same forward and back-propagation scheme. We assume that separate map tasks
are performed sequentially on cores.

It therefore follows directly that since we will have O(NT) total sliding windows due to the windows

2
overlapping, the total runtime when processing all sliding windows is O(% + %) a factor

of T" more runtime than the sequential train version.

Sampling « percent of the sliding windows to train in each iteration will just add an « to the above

; . VHNT H2NT
runtimes: O(aGp— + a=z5).

4.2 Communication Cost

One nice property of the neural network setup is that the only communication that needs to occur is
an All Reduce on the weight matrices in between iterations. The gradients are computed separately
on each core of each machine and, in the case of the longer sequential trains, are used to locally
update the weight matrices during an iteration. Then, the resulting weight matrices need to be
averaged across cores and machines, which is where the All Reduce comes in.

The total amount of data that crosses the network per iteration is O(VHP + H?P), assuming
that local combiners are used to average the weight matrices from the different machine cores.
Since the communication occurs in a BitTorrent-like manner, the time cost of this communication is
O(V H log, P+ H?log, P).

Note that if there were no combiners and every mapper sent its output onto the network, the commu-
nication costs would vary between the different methods. A per-core sequential train, for example,
would send O(VHPC + H?PC') data onto the network since each machine core would have out-
put. Meanwhile, a sampled sliding windows approach would send out O(V H a% +H 204%) data
onto the network, again corresponding to the number of map tasks.

Observe that in practice, there isn’t necessarily a need to keep the weight matrices in sync across
machines and cores every single operation. If bandwidth is low and/or latency is high, a better option
may be to continue locally updating weight matrices for multiple iterations before pursuing the All
Reduce. One of the empirical experiments we run is how this affects convergence.

4.3 Optimization

All of the analysis we’ve done so far has been on a per-iteration basis. How many iterations will it
take to converge? Note that in practice, language models are not formally trained with a stopping
criterion of convergence but rather are kept running until the results look good.

It’s worth noting up front that there isn’t a direct mapping with the standard gradient descent /
stochastic gradient descent literature here. Most analyses assume that the gradient is separable
across observations, which is not the case here due to the sequential nature of the model. Thus,
every version of the parallelized model, and even the standard sequential models with truncated
backpropagation, are only approximating the gradient over thheir particular sequence of data.

Besides the non-separability of the gradient, we also violate the standard model of GD/SGD by
sometimes performing local parameter updates within an iteration instead of just calculating gradi-
ents on fixed inputs and weights.

That being said, the ultimate averaging of weights comes pretty close to a “true” gradient descent
step in practice, so it makes sense to approximate the number of iterations it takes to convergence us-

Successful reproduction of sentence Unique combinations from corpus

And yet the bullshit you choose may be harder to Otherwise these people are litably forced on you,

eliminate than the bullshit that’s forced on you. the bullshit that sneaks into your life by tricking
you is no one’s fault but your own.

Table 1: Example of character-level RNN output.

ing the standard optimization theory. We avoid considering the possibility of Hogwild optimization
since our implementation in Spark synchronously updates parameters each step.

Thus, we estimate that the full gradient approximation of sequentially training on each machine will
require O(log %) iterations and the SGD approximation of sampling from sliding windows will take
O(%) iterations, where € is the desired convergence level. The cost of averaging the parameters
requires O(VHP + H?P) work and O(log P) depth, again assuming combiners, which pales in
comparison to the cost of an iteration.

5 Experiments

We implement our character-level RNN model on Spark using Scala. In the following experiments,
the RNN model is given a document as corpus and the task is to recover vocabulary and writing
style on a character-by-character basis. A sample of our RNN model input and output are shown in
Table. [T] where the results are obtained after training our model with Paul Graham’s article.

5.1 Data

We compare the performance of distributed training algorithms proposed in sections 3 and 4 using
two different corpora: the Paul Graham corpus and Wikicorpus [S]. The Paul Graham corpus is
an article by Paul Graham which contains 8.5 thousand characters; we associate this as a small
corpus. The Wikicorpus contains Wikipedia contents based on a 2006 dump. We took a portion of
Wikicorpus which contains 22.3 million characters as our training corpus. We consider this a large
corpus in terms of character-level models.

5.2 Distributed Training Algorithms

We experiment with three different distributed training algorithms. The first algorithm distributes
corpora as an RDD of paragraphs. Within each paragraph we train sequentially. As discussed above,
we use this as an easily implementable approximation of the sequential train per machine approach.
The second algorithm transforms corpora into an RDD of sliding windows as proposed in previous
sections; sliding windows are trained in parallel with a gradient descent manner. The third algorithm
modifies the previous where a random sample of sliding windows are trained in each iteration.

We first run the Paul Graham corpus with 8.5K characters on sequential paragraph training, all
sliding window training, and sampled sliding window training. The results are shown in Fig.[3] We
measure the performance of algorithms by average per-character training loss. Since our goal is
training efficiency it’s reasonable to focus on training loss only.

Number of characters seen is an estimation of total work incurred by each algorithm. With the same
amount of work, the sampled sliding window algorithm outperforms the all sliding window algo-
rithm. The result comes with no surprise as sliding windows overlap with each other and sampling
among sliding windows boosts computational efficiency while sacrificing little in terms of training
efficacy. Sequential paragraph training has the best loss performance, showing the importance of
preserving sequence order in RNN models.

To compare our algorithms in a distributed environment where communication is the bottleneck, we
estimate communication cost by the number of All Reduce communications incurred and demon-
strate the comparison in Fig. [3b] With the same number of All Reduce communications, the all
sliding window and sampled sliding window algorithms have similar loss performance. However,
taking into consideration the smaller communication size for the sampled approach (in the case of

6.0 T

— paragraph
55 — all windows .
— sampled windows
50 8
45 .
H ‘
o 40 8
g ||
£
= |
m 35} §
= |
|
3o} |

%
e
.'>
IIII
II
|
|
|
|
|

20}

15

0 3000 2000 B000 5000 10000 12000
Mumber of characters seen (K}

(a) Performance measurement using number of characters seen. Number of
characters seen is an estimation of total work.

6.0 T T
— paragraph
55 — all window
— sampled window
5.0
45
&
o 40
(=4
c
c
‘m 35
=
30
15 Il Il Il Il 1 Il
o 200 400 600 800 1000 1200 1400

Number of All Reduce communications

(b) Performance measurement by number of All Reduce communications in-
curred.

Figure 3: All RNN models have 1 layer and 25 hidden units. Paragraph training takes a subsequence

of length 25 each time. Sliding windows have length 5. Random sampling samples 1% of sliding
windows each time.

no combiners) or reduced combiner workload (in the case of combiners), sampled sliding windows
is preferred compared to all sliding windows.

For corpora as large as Wikicorpus we utilize sampling techniques to enhance training efficiency.
We run a modified sequential paragraph training algorithm where a sample of paragraphs are trained
in each iteration. We compare sampled paragraph training and sampled sliding window training as
shown in Fig. [l The comparisons are based on number of characters seen and number of com-
munications. Sampled paragraph training achieves better loss performance in terms of number of
characters seen and number of communications, again demonstrating the importance of preserving
sequence order and passing memory states within paragraphs.

— paragraph
— sampled window

A

|
luﬁp“"“*im

; SN

i e A A A AL A i

Training loss
g

(=]
T

0 200 400 EO0 8OO 1000 1200 1400
Number of characters seen (K}

(a) Performance measurement using number of characters seen.

— paragraph
— sampled window

Training loss
F=
g —

o 100 200 300 400 500
Number of All Reduce communications

(b) Performance measurement by number of All Reduce communications in-
curred.

Figure 4: All RNN models have 1 layer and 25 hidden units. Paragraph training takes a subsequence
of length 25 each time. Sliding windows have length 25. Random sampling samples 0.01% of
paragraphs and 0.0005% of sliding windows each time.

5.3 Modified Paragraph Training

It is possible to further enhance the performance of sequential paragraph training by controlling
communication. Before communicating with other machines, each machine can iterate through its
paragraph multiple times such that overall communication cost can be reduced. With Wikicorpus we
experiment on how the number of iterations before communication affects loss performance. The
results are shown in Fig.[3]

Experiment results show multiple iterations before communication may slightly slow down the rate
of loss convergence. However, as the training process goes on the difference between single iteration

34

— iter-1
— iter-2
— iter-3
— iter-4
30 — iter-5 ||
iter-10

32

— iter-15

28

261\

241

22

20

0 100 200 300 400 500 600

Figure 5: Loss performance for different number of iterations before All Reduce communication
under sequential paragraph training algorithm.

and multiple iteration narrows. This indicates a design choice in designing RNN training algorithms.
With different environments and different network latency conditions, it is possible to adjust the
number of iterations before communication to achieve optimal efficiency.

6 Conclusion

We examined the efficacy of a variety of methods to take advantage of distributed computing in the
training of RNN-based language models. Theoretically, there are reasons to believe that naively
parallel sequential models and sliding window-based models might be faster and more accurate than
each other, as well as a directly sequential model. We test these techniques’ efficiencies using a
complete ground-up implementation of an RNN in Apache Spark. We find that naively parallel se-
quential models outperform sliding window approaches in terms of loss convergence performance
on total work and number of communications. We propose further enhancement of parallel sequen-
tial algorithms by controlling the number of local iterations before communication. In an environ-
ment where communication costs are high, it is beneficial to iterate multiple times locally before
communication.

References

[1] Chelba, C., Mikolov, T., Schuster, M., Ge, Q., and Brants, T. (2013). One Billion
Word Benchmark for Measuring Progress in Statistical Language Modeling. arXiv preprint.
arXiv:1312.3005

[2] Karpathy, A. (2015). Minimal Character-Level Language Model with a Vanilla Recurrent Neural
Network. https://gist.github.com/karpathy/d4dee566867£8291f086

[3] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010). Recurrent Neural
Network Based Language Model. INTERSPEECH 2, 3.

[4] Williams, W., Prasad, N., Mrva, D., Ash, T., and Robinson, T (2015). Scaling Recurrent Neural
Network Language Models. arXiv preprint. arXiv:1502.00512v1

[5] Samuel R., Gemma B., Montse C., Lluis P., German R. (2010). Wikicorpus: A Word-Sense
Disambiguated Multilingual Wikipedia Corpus. LREC’10

	Introduction
	Background
	Language Models
	Recurrent Neural Networks

	Incorporating Parallelism
	Algorithmic Analysis
	Per Iteration Cost
	Communication Cost
	Optimization

	Experiments
	Data
	Distributed Training Algorithms
	Modified Paragraph Training

	Conclusion

