Low-rank matrix factorization using distributed
SGD in Spark

Nikhil Parthasarathy and Pin Pin Tea-mangkornpan

Abstract

Obtaining low-rank factorizations of large matrices is an important
problem in many fields and is extremely important for problems in ma-
chine learning such as collaborative filtering. In this project, we implement
a version of an existing distributed stochastic gradient descent (DSGD)
algorithm for matrix factorization in the Apache Spark framework. While
the basic algorithmic form is not novel, we explore implementation chal-
lenges and issues in the context of Spark specific data structures and
communication patterns. Two practical comparisons of runtimes for fac-
torizations with various latent factor ranks are made between: 1) our
implementation and a sequential SGD method and 2) our implementa-
tion and the existing Spark MLIib implementation of alternating least
squares (ALS) for matrix factorization. We find that there is significant
improvement over the sequential method. However, it is the case that un-
less both the rank of the factors is extremely large and the data is dense,
the ALS method in general converges with a much faster runtime.

1 Introduction

1.1 Problem Statement

The problem of finding low-rank matrix factorizations is one that is extremely
important and widely used in many fields. The abstract idea can be described
as follows. Consider any matrix V € R™*™. If both n and m are very large,
often times, finding a low-rank approximation can be useful for reducing dimen-
sionality, extracting signal from noise, etc. More formally, in finding a low-rank
approximation, we seek matrices (or “factor”) W € R™** and H € R™*¥ such
that we minimize a loss between the reconstructed matrix and the original V.
A common method is to try and find W and H such that we minimize the
Frobenius norm of the difference:

1
min [V — WHT |}, (1)

If we find a solution to this minimization problem then we have found an ap-
proximation for V that is of rank k matrix (and we hope that we can achieve
a reasonable approximation where k < rank(V)). This problem formulation
appears in many places, one of the most common areas being collaborative fil-
tering for recommender systems.

Because the experiments in this work were run on movie recommendation data,
for the rest of this paper, we constrain our interpretation of the data to be

as follows. V is the ratings matrix with rows corresponding to users, columns
corresponding to movies and each entry (4,) is the rating of movie j by user
1. W is the user factor matrix with rows corresponding to each user. H is the
movie factor matrix with rows corresponding to each movie.

1.2 Objective

Many algorithms for solving this problem have been developed both for use
on single machines and in a distributed setting. Two of the most prominent
distributed algorithms for matrix factorization are the distributed stochastic
gradient descent (DSGD) method proposed by Gemulla et al. in [I] and the
alternating least squares (ALS) method proposed by Zhou et al. in [5]. There
are many frameworks that have been developed for distributed processing but
as of now, it seems that the Apache Spark framework is becoming more of a
standard in industry. As a result, libraries like the MLIib library are starting to
be developed to implement and package useful algorithms for the community to
use. Currently, the MLIib library contains only the ALS method for handling
low-rank matrix factorization in the collaborative filtering setting. Even though
the DSGD algorithm has published implementations on Hadoop based systems,
there is no published implementation using Spark. The work of Li et al. in [2]
describe an implementation at a high-level in Spark, but they primarily focus
on developing a novel data abstraction outside of the current Spark framework
and do not provide any published code or benchmarks. Therefore, the goal of
this project is as follows:

1. Implement the algorithm of [I] on Spark using only the existing data
structures and communication patterns.

2. Benchmark this implementation against the current ALS standard and
against a sequential SGD baseline.

3. Analyze the Spark specific challenges and costs in terms of network com-
munication, memory, and computation.

1.3 Outline

The outline of the paper is as follows. Section 2 describes the theory behind the
three algorithms we implement. Section 3 discusses the Spark specific imple-
mentation details of the DSGD algorithm and provides analysis of the relevant
costs. Section 4 provides various benchmark results comparing DSGD to the
sequential SGD and to the ALS implementation. Finally, Section 5 provides
some final discussion and future work.

2 Algorithms
2.1 Sequential SGD

One of the most basic approaches to solving the optimization problem given in
Eq. [1}is to simply iterate sequentially over every non-zero element in the data
matrix using SGD. For every training point in the training data, we compute an

L2-loss with respect to the corresponding row and column in the factor matrices.
The losses are defined as follows (including a regularization term):

0

W (VU’W H) 2(V7,j - Wi’:H;’j)H:)j + 2)\W;r (2)
0
aTL(VlJ’Wl” H77) == _Q(sz - WLH’J)WI’ + QAH)] (3)
5J

The algorithm is thus given by the following procedure:

Algorithm 1 Sequential Stochastic Gradient Descent for Matrix Factorization

1: procedure SGD

2: V « randomly shuffled training data

3 Wy < randomly initialized W

4 Hy + randomly initialized H

5: while not converged do

6 Select a training point with indices (4, j) from V
e Werev — WO

] HPrev — H0

9 W, W — ena“ﬁ%L(V WP HP)

R
prev prev prev
10: H ;< H; "~ — naHp,ev L(Vj, W H)

Here ¢, is the step size.

2.2 DSGD

Looking at the sequential SGD, we see that the update is dependent on row i of
W and column j of H and the entry V;;. The key insight into distributing the
SGD update centers is based on the concept of “interchangeability”. Consider
two sets of row indices I and I’ of V. Also define sets of column indices J
and J'. Now two matrix blocks 7 X J and I’ X J' are interchangeable if I N
I’ =0 and JNJ' = 0. If we consider a matrix block V;;, then the gradient
updates determined by {Vr;, Wy ., H;.} and {V 5, W ., Hys .} do not have
any overlapping computations, so they can be distributed in parallel. Therefore,
in the DSGD method, the main goal is to find sets of interchangeable blocks
(known as strata) so that each block within a stratum can be updated in parallel
using SGD. As long as the parameters have not converged, we keep selecting a
new stratum and feed the blocks of the stratum to the separate workers. For
illustrative purposes, we show Figure 1 taken from [I] that presents a possible
set of strata that covers a data matrix blocked into a three by three grid: We

Vs Vasd et A Ve et Z1| g1z gt |z 12| g1 A a e Zi gzl s

221 Z?Q 223 221 Z'IQ 223 221 222 z!ii Z'_’l 222 223 221 Z'_’2 Z2il Z'_’l 222 Z?ii

Zill Zii% Zaﬂ an Zil2 Ziiii ZC!l ZSZ Zdii Z\'!l Zsﬁ Zilii Z\'!l Z{!2 ZSS Zsl Z\'!Z Zilil
YA Z2 Z3 Za Zs Zg
Figure 1: Strata for a 3 x 3 blocking of training matrix Z

can thus think of the overall loss function as being decomposed into a linear
combination of local losses associated with each stratum:

L(W7 H) = Zq: WeLg (Wv H) (4)
s=1

ws is a weight associated with each stratum specific loss. For the purposes of

this project, we set ws = % where Ny is the number of non-zero in the stratum
and N is the total number of non-zero entries. For the specific DSGD algorithm

details and structure, see Section 3.

2.3 ALS

Finally, as we are benchmarking our DSGD implementation against the Spark
implementation of ALS for matrix factorization, we briefly provide an overview
of the ALS method. The ALS procedure can be described by the following steps:

1. Randomly initialize the matrix H by assigning the average rating for the
corresponding movie (in the case of movie recommendation) as the first
row, and add small random numbers for the remaining entries

2. Fix H and solve for W that minimizes the objective function (the root
mean square error (RMSE)).

3. Fix W and solve for H that minimizes the objective function similarly.
4. Repeat steps 2 and 3 until convergence.

The details of how to minimize the objectives etc. are given in [5], but we
note a few key ideas that are specific to distributing ALS. First, two distributed
copies of the ratings matrix V, one distributed by rows and one distributed by
columns must be broadcast to each machine. The updating of W and H also
require replicating and communicating the corresponding factor matrix during
each update. Users and movies must be partitioned into groups and the updates
corresponding to specific groups are sent to separate machines which are then
gathered after the computation is done. While this description provides a high-
level view of the ALS method, the Spark specific implementation details (which
are necessary to do a full theoretical comparison of DSGD with ALS) are not
analyzed in this project.

3 Implementation

3.1 Our Design

We implemented DSGD using Spark (in Pyspark). All code for this project can
be found at https://github.com/pinnareet/CME323DSGD. Our pseudocode is
depicted in Algorithm First, the data is parsed and stored as a coordinate
matrix V (Line 2), which we use its dimension to initialize the factor matrices
W and H (Line 4-5). We initialize W and H as RDDs with each entry of W
corresponding to each row, and each entry of H corresponding to each column
(Line 6-7). Every each entry is keyed with its original row and column index.
Note that with our algorithm, we can fix W’s row index as key, and permute

https://github.com/pinnareet/CME323DSGD
https://github.com/pinnareet/CME323DSGD

H’s column index to obtain a stratum. Therefore, we assign each entry of W
with its row block index before performing the DSGD iterations (Line 8).
Each stratum is processed sequentially until the factors converge. In the loop,
we pick a stratum, preassigned by fixing the row index and permuting the col-
umn index. Note that this guarantees non-overlapping blocks of matrices. Then
we filter V, as well as change it into an RDD so that the RDD contains only en-
tries of V that correspond to the selected statum (Line 11). Each entry of RDD
is keyed with its row block index, which is sufficient given that we have already
filtered the columns of V (Line 12). Next, we key H with its corresponding
permuted column index (Line 13). Designed to optimize distributed computing,
Spark abstracts users from specifying the partitions in its basic transformation
interface. We need to override Spark’s automatic partition to ensure that cor-
responding blocks of V, W, and H will be computed on the same processor.
We combine the V, W, and H RDDs using the Spark transformation cogroup()
(a.k.a. groupWith()), which returns an RDD of a tuple (k, combined RDDs of
V, W, and H that has key k) (Line 14). Then we use partitionBy() to ensure
that each partition of cojoinedRDD will be run on the same processor (Line
15). Finally, we map each partition of cojoinedRDD using mapPartitions(),
which runs SGD on each block in the stratum in parallel (Line 16).

Algorithm 2 Distributed Stochastic Gradient Descent for Matrix Factorization

1: procedure DSGD

2: V < training data

3 rank < number of latent factors

4 numRows < number of rows of V

5: numCols < number of columns of V
6
7
8

W + randomly initialized matrix with dimension numRows X rank
H «+ randomly initialized matrix with dimension rank x numCols
keyedW < a tuple of each entry of W and its corresponding

block number

9: while not converged do

10: Select a stratum

11: V F + filtered matrix V to the corresponding stratum

12: keyedV F <+ a tuple of each entry of V' F with each block keyed
with its corresponding block number

13: keyedH < a tuple of each entry of H and its corresponding
permuted block number

14: cojoinedRDD «+ V' F, keyedH, and keyedW grouped by key

15: Assign each partition of cojoined RDD with the same key to be
distributed to the same processor

16: Run SGD on each partition of cojoinedRDD in parallel

3.2 Design Choices

Instead of shipping W, H, and a stratum of V around when providing each
block data to each processor, we can alternatively broadcast V, W, and H
to every processor and perform DSGD with less communication cost. For V|,
broadcasting the matrix may be more efficient if the total number of entries is

small compared to available memory space, since we do not have to communicate
the stratum of V at every iteration of stratum selection. For W and H, however,
one needs to broadcast the entire matrices and still update the matrices at every
SGD iteration. We analyze the communication cost between these design choices
in the following subsection.

3.3 Analysis

Let Ve R™*" W € R™*" H € R"™*"™ V has ¢ entries, the number of work-
ers/processors be k, and the number of iterations be i. On the one hand, if
we broadcast all matrices, we need to broadcast the entire V, W, and H only
once at the beginning. The communication cost is O(k(q + mr + nr)), because
we all entries of V, and the entire matrices W and H to k& workers. Moreover,
we need to update W and H at every iteration. Note that we need only up-
date the stratified blocks of W and H, so the all-to-one communication takes
O(k™mutnry = O(mr + nr) for each iteration. Therefore, the total communi-
cation cost is O(kq + k(mr + nr) + i(mr + nr)) = O(kq + (k + i)(mr 4+ nr)),
which would be O(k(q + mr + nr)) if ¢ scales linearly (or less) with k, and
O(kq + i(mr 4+ nr)) otherwise.

On the other hand, our implementation sends the filtered blocks of V, W,
and H to each worker at every iteration. For a single iteration, the expected
communication cost is O(k3%) = O(}) for shipping filtered entries of V to k

workers, and O(k%) = O(mr + nr) for shipping a block of W and H
to k workers. Note that the expected value of entries of V in each block of a
stratum is % because we perform data-independent blocking, which ensures that
the expected number of training points in each block of V is ;% [I]. Hence, the
total communication cost is O(i({ + mr + nr)).

Comparing the communication costs of the two approaches, O(kq+ (k+1)(mr+
nr)) and O(i({ 4+ mr + nr)), there are several scenarios we must consider. If
i scales linearly with k, our implementation definitely fares better. If ¢ scales
at least quadratically with k, then we need to consider the number of latent
factors r, and the sparsity of V. If V is so dense that the ¢ term dominates, then
broadcasting would be a better choice. If the mr+nr term dominates, and given
that 7 at least quadratically larger than k, then our implementation is slightly
better (having k(mr + nr) less elements that need to be communicated). Both
designs should yield similar performance in big-O time. In our experiment, we do
not see poor performance as r gets larger as mentioned in [2] because the dataset
is dense, which makes the ¢ term dominates. However, since we do not know
how i scales with k, broadcasting does not necessarily yield better performance.
In general, ¢ should be independent of %k, so we may need to experiment and
choose the appropriate design depending on the sparsity structure of the data.

4 Results

The DSGD algorithm was implemented in PySpark and run using a Spark 1.6.1
installation on a DataBricks cluster. The cluster had 13 worker nodes each
with 30 GB of memory. The main dataset that was used for the experiments
was the MovieLens 1M dataset which consists of 1 million ratings with 6040
users and 3883 movies [3]. In addition, for limited experiments we also utilized

the MovieLens 10M dataset which consists of 10 million ratings with 71567
users and 10681 movies (because of time constraints we were not able to run all
experiments with this much larger dataset).

4.1 DSGD Scaling

We first tested the scaling of the DSGD implementation runtime against the
number of workers and the rank of the factors W and H. Figure [2] shows these
results.

Scaling of DSGD with Rank of Factors Scaling of DSGD with Number of Workers

65

®

60

35 N - —
a Yo e

4
4
Average runtime per iteration (in seconds)
®
-

Average runtime per iteration (in seconds)

0 50 100 150 200 250 300 350 400 3 4 5 6 7 8 9 10 11 12 13
Rank of Factors Number of Workers

Figure 2

We can see that as expected the runtime per iteration does go up as the rank
of the factors gets larger, but even with the large 10 million rating dataset, the
increase is not prohibitively significant for rank less than 200. We expect that
the effect of the rank of the factors will most likely only become a serious problem
when the number of users/movies is much larger. In addition, we see a great
speedup per iteration (super-linear) with the increase in number of workers. It
is important to note again, however, that these effects are most likely related
to the fact that the MovieLens dataset is pretty dense. Therefore, the costs
of communicating the factors is dominated by the cost of communicating the
actual data blocks.

4.2 SGD vs. DSGD

The first comparison made was between DSGD and sequential SGD. We simu-
late sequential SGD by running our implementation on a single machine with
one worker. Figure [3] shows the runtime of DSGD and sequential SGD with
factor rank 50. Notice that DSGD converges approximately 4 times faster than
sequential SGD implementation in runtime. DSGD’s MSE drops significantly
within 30 seconds, whereas that of SGD reaches the same MSE at more than 150
seconds. The result confirms that DSGD has significant performance advantage
over sequential SGD.

4.3 ALS vs. DSGD

The main goal of this project was to see if the DSGD algorithm could im-
plemented in Spark to be competitive with the current ALS implementation.
Because we could not get into the code of the ALS algorithm to print values
at every iteration, we report comparisons of the final runtimes required by each

DSGD/SGD MSE vs. Runtime

DSGD
SGD

50 100 150 200 250 300 350 400 450
Runtime (seconds)

Figure 3

method to reach convergence in the factors. Since we were using the out-of-the-
box ALS implementation, we could not retrieve convergence results, however,
the documentation suggests that running the algorithm for 20 iterations will
produce reasonable results. Therefore, we run the ALS for 20 iterations and
compare to the DSGD convergence time E Both implementations were run on
the MovieLens 1M dataset on the same cluster.

Factor Rank ALS DSGD

10 20.1s 51.0s
20 20.0s 456
50 15.7 s 53.4 s
100 23.5s 55.5s
200 38.7s B87s
400 130.1s 63.6 s

Table 1: Comparison of ALS and DSGD runtimes to convergence for different
ranks of factors

Interestingly, even though the ALS out-performs the DSGD implementation for
all ranks below 200, for rank of 400, the DSGD actually converges faster than
ALS. This indicates that for dense matrices, DSGD might scale better with
the rank of factors than the ALS algorithm. In order to see how these two
methods compared with scaling of the data size, we ran ALS and DSGD on the
MovieLens 10M dataset, setting the rank of the factors to a reasonable size of
k = 50. In this case, the ALS ran in 108 seconds whereas the DSGD ran in 642
seconds, indicating that the current DSGD implementation scales far worse than
the ALS implementation with large scaling of the number of data entries. We
expect this difference to be mitigated, however, if we had many more workers.

5 Discussion

We have implemented DSGD in Apache Spark, and compared runtimes of our
implementation with sequential SGD and the Spark MLIib implementation of

IDSGD convergence achieved when the MSE stops changing within a fixed tolerance.

ALS for matrix factorization. For DSGD implementation, we choose to commu-
nicate the stratified data matrix and the factor matrices as opposed to broad-
casting the variables. We have shown that the communication cost of both
approaches are O(i({ +mr +nr)) and O(kq + (k +4)(mr +nr)) (the variables
are defined in Section7 respectively, which makes our implementation a bet-
ter choice if the data is not too sparse and the number of iterations does not
scale badly with the number of rank factors. Our experiment with the Movie-
Lens dataset shows that for DSGD, the runtime per iteration increases with
rank, but the magnitude is not significant for ranks less than 200. We also see
significant increase in per iteration speed with the increase of number of work-
ers. Comparing DSGD with sequential SGD and ALS, we found that DSGD
outperforms SGD in by 4-fold in runtime for rank 50, but outperforms ALS only
when the rank is 400 or greater. However, DSGD scales worse than ALS with
data size, which we expect to mitigate by increasing the number of workers.

In future work, we plan to run experiments with our implementation on larger
datasets, such as the Netflix Prize dataset, and implement the algorithm in
Scala. As discussed in we may need to change the implementation depend-
ing on the sparsity of the matrix. We also plan to investigate the SparkMLIlib
ALS implementation, as well as perform theoretical analysis comparing it to
DSGD. Finally, we plan to explore Non-locking, stOchastic Multi-machine al-
gorithm for Asynchronous and Decentralized matrix completion (NOMAD), an
asynchronous parallel distributed algorithm for matrix completion . Yun et al.
claims that NOMAD outperforms DSGD on all configurations of their experi-
ment [4]. Our current work could not be compared to NOMAD because we did
not obtain the same datasets.

References

[1] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix
factorization with distributed stochastic gradient descent. Conference on
Knowledge Discovery and Data Mining, pages 69-77, 2011.

[2] B. Li, S. Tata, and Y. Sismanis. Sparkler: Supporting large-scale matrix
factorization. EDBT, page 625-636, 2013.

[3] GroupLens Research. MovieLens. http://grouplens.org/datasets/movielens/.
Accessed: 2016-06-01.

[4] H. Yun, H. Yu, C. Hsieh, S. Vishwanathan, and I. Dhillon. NOMAD: Non-
locking, stOchastic Multi-machine algorithm for Asynchronous and Decen-
tralized matrix completion. arXiv preprint arXiv:1812.0193, 2013.

[5] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel col-
laborative filtering for the netflix prize. Proceedings of the 4th international
conference on Algorithmic Aspects in Information and Management, page
337-348, 2008.

	Introduction
	Problem Statement
	Objective
	Outline

	Algorithms
	Sequential SGD
	DSGD
	ALS

	Implementation
	Our Design
	Design Choices
	Analysis

	Results
	DSGD Scaling
	SGD vs. DSGD
	ALS vs. DSGD

	Discussion

