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1 Introduction

Consider the multi-armed bandit (MAB) problem. In this sequential optimiza-
tion problem, a player gets to pull one of K arms at every time instant. Arm

i when pulled yields a reward Yi,k
iid∼ Pi. The distribution and means of the

rewards for each arm are unknown. The goal of the player is the maximize
rewards or minimize regret (difference between an oracle who knows the dis-
tribution of rewards and the player). MAB problems are used in online ad
placement, ranking of search results, accelerating model selection among other
applications. There is a balance between exploring arms which have not been
seen before and exploiting the arm that is seen till now to offer the best rewards.

The analysis of the multiarmed bandit problem was given by Gittens [1].
Upper Confidence Bound and a variant of online gradient approach to solving
the single player case was proposed by Auer et al [2]. The analysis of Posterior
Sampling was done in [3].

In this project, we consider the distributed version of the problem where
there are n players distributed on a network. Each node plays the game in
parallel and can communicate with their neighbour. We investigate how much
cooperation can help players converge to the optimal arm. A version of this
problem was studied in Liu [4] where players play with common arms and there
are collisions if multiple players pick the same arm. There is no communication
between players. In [5], the distributed bandit problem in considered on a P2P
network where any node can communicate with any other node. A distributed
ε-greedy approach was mooted and an analysis for a simplified case was pre-
sented. Finally, in [6], the impact of infrequent all-to-all communication on the
convergence of distributed multiarmed bandits is analysed. In this work, we
extend the online gradient approach to the distributed network case.

2 Single Player Solutions

We further make assumptions that the rewards on each arm are subgaussian
with parameter σ2. An example could be that the rewards on the K arms arise

from bernoulli distributions of different means.I.e. yi
iid∼ B(pi) is the distribution
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of the rewards on the ith arm. Suppose that the i∗th arm is optimal and the
mean of the rewards from this arm is p∗ and that the reward from the arm i
the expected regret of a policy u can be defined as,

RT (u) = E

[
T∑
t=1

p∗ − yu(t,yt1)

]
(1)

A variety of approaches have been proposed to solve the problem when there
is a single player [7]. We go over a few briefly here:

1. ε-greedy approach: The player maintains empirical estimates of the mean
for each arm as they see rewards. With probability −1ε, they play the best
arm seen till now, or otherwise randomly pick an arm to drive exploration.

2. Upper Confidence Bound (UCB) approaches: In this approach, the player
maintains a range for the mean of the rewards on each arm. The mean
would fall in this range with high probability. At each time instant, the
player picks the arm with the highest upper confidence bound and this
drives exploration. As the player sees more instances of the reward from
a particular arm, they can tighten the high probability bounds they have
for the mean. With no assumptions on the gap between means of optimal
and suboptimal arms, the regret scales as O(

√
Kσ2T log T ).

3. Posterior Sampling: This approach, also known as Thompson sampling
is a Bayesian approach. A prior is placed on the parameters (in this
case the means) of the rewards on each arm. At each time instant, the
parameters are sampled from the prior and based on this, the best arm
is chosen. The posterior is now updated based on the reward from the
arm chosen. Posterior sampling achieves regret bounds close to UCB of
O(
√
KT log T +K).

4. Online Gradient Descent Approach: We describe this approach in greater
detail as we will expand to the case with collaborative distributed multi-
armed bandits. In this algorithm, the player maintains a distribution
from which the best arm is sampled at each time instant. The reward
seen is used to generate an unbiased estimate of the mean rewards and
this is appended to a running estimate. The distribution maximizing the
expected reward with the running estimate is now chosen. This is further
highlighted in Alg. 1

As seen, g is the running estimate of the rewards of each arm, w is the dis-
tribution that is maintained. The regret of this algorithm isO(

√
KT log T ).

The algorithm is obtained from online mirror descent approaches with en-
tropic regularization. Given running estimate of rewards, the distribution
that maximizes expected reward is the solution to the following optimiza-
tion problem

min
w∈∆K

gᵀt w +
1

η

∑
k∈[K]

wk logwk.
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Algorithm 1 Online gradient descent method to solve the bandit problem.

Input: stepsize η, initial vector w1 = 1
K1, initial loss estimate g1 = 0.

repeatChoose arm i with probability wt,i, receive loss yi

gt+1,j ← gt,j +

{
yj/wt,j if j = i

0 else.

wt+1,j ←
exp(−ηgt+1,i)∑
k exp(−ηgt+1,k)

∀j ∈ [K]

until t = T

The solution is exponentiated gradient descent. This method is similar to
the follow-the-regularized leader approach.

3 Distributed Solution

We follow the approach in Duchi et al [8] for generalizing the online gradient
method for networks.

Let us consider that there are n nodes on an undirected network G = (V,E)
each playing the bandit game independently but the arms for each player offer
rewards from the same distribution. At the end of each time instant, a node
can send a message of size O(K) to all its neighbours. This is similar to the
Pregel framework seen in class. Our goal is minimize the average regret seen by
all players.

In [8], distributed dual averaging is an approach to generalizing dual averag-
ing or follow-the-regularized-leader problems. Suppose that A is the adjacency
matrix. Let D be a matrix whose diagonal elements are the degrees of the var-
ious nodes. We can obtain a double stochastic matrix P where Pi,j is non-zero
only if nodes i and j are neighbours. P can be obtained as,

P = I − 1

max(diag(D))
(D −A)

The nodes now mix the running estimates of the rewards from neighbours.
This enables rapid exploration initially as neighbours may play different arms.
The algorithm is described in Alg. 2

As was shown in [8], the average ḡαT = 1
T

∑T
t=1 g

α
t converges to the optimal

value for each node. The convergence analysis of this algorithm has not yet been
performed and is future work. It is believed that the spectral gap 1− σ2(P ) or
the gap between the first and second eigenvalues of P governs the convergence
rate of the process. For a well connected graph, the spectral gap is larger and
the random walk mixing time is small. When there are no edges between nodes,
the spectral gap is 0 and the random walk mixing time in infinity.

We now empirically verify the performance of the scheme. In Fig. 1, we con-
trast the performance of the distributed online gradient descent algorithm with
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Algorithm 2 Distributed online gradient descent method to solve the bandit
problem.

Input: stepsize η, initial vector wα1 = 1
K1, initial loss estimate gα1 = 0 for

all nodes α.
repeat

for All nodes α in parallel do choose arm i with probability wαt,i, receive
loss yαi

gαt+1,j ←
∑
β

Pα,βg
β
t,j +

{
yαj /w

α
t,j if j = i

0 else.

wαt+1,j ←
exp(−ηgαt+1,i)∑
k exp(−ηgαt+1,k)

∀j ∈ [K]

end for
until t = T

10 nodes and 30 arms when the nodes are not connected, connected via a chain
with 2 neighbours and are completely connected. It is seen that cooperation
reduces the regret.

In Fig. 2, we see the performance of grid configuration and a random graph
with the same number of edges. The random graph is seen to perform marginally
better.

This framework can be extended to the case where the links stochastically
vary mimicking conditions in wireless sensor networks.

4 Conclusion and Further Work

In this work, we have proposed an extension of the multiarmed bandit problem
to the distributed scenario where nodes can only communicate with neighbours.
We have seen that cooperation reduces the expected regret. Also, the graph
configuration which enables rapid mixing or quick communication of values from
one to the other is better. This informs the design of wireless sensor networks.

For future work, the primary problem is to analyse the convergence of the
regret of the algorithm. In the scheme, each node transmits a message of size
O(K) which can be prohibitively large if the number of arms is large. Schemes
which transmit a sample of the message and the convergence analysis of these
schemes will be useful to know. Finally, the optimal choice of the step-size in
the online algorithm depends on the number of nodes, the number of time-steps
and the configuration of the network. Investigating the dependence on these
parameters will be required for practical implementations.
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Figure 1: Regret varying for 10 nodes and 30 arms when they do not coordinate,
communicate through a chain graph and on a complete graph.
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Figure 2: Regret varying for 9 nodes and 30 arms with a grid and random graph
with same number of nodes.
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