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Abstract

Bayesian Personalized Ranking (BPR) is a general learning framework for item
recommendation using implicit feedback (e.g. clicks, purchases, visits to an item),
by far the most prevalent form of feedback in the web. Using a generic op-
timization criterion based on the maximum posterior estimator derived from a
Bayesian analysis, BPR differentiates itself from other common recommenda-
tion algorithms in two main aspects. First, it directly optimizes the final ob-
jective of ranking. Second, it abstracts away the underlying rating computation
model (which could be, for instance, matrix factorization or k-nearest-neighbors).
In this paper, we define a distributed version of BPR using matrix factoriza-
tion for the Spark ecosystem, which we implement in both Scala and Python
(https://github.com/alfredolainez/bpr-spark).

1 Introduction

Recommender systems currently play a central role in the modern Internet. As a major factor for
user engagement and revenue, much of the content seen on the web is presented as a personalized
recommendation of some form. Furthermore, the easy availability of data used by recommender
systems makes them a perfect example of high-availability systems that need to scale to multiple
computers.

Following the widely-used recommendation module in Apache Mahout, Spark included its own ver-
sion of alternating least squares from its inception. Alternating least squares (ALS) [HKV08] is
the de facto standard method for building collaborative filtering recommender systems for massive
amounts of data. Stemming from the popularity of matrix factorization methods after the Netflix
prize, the algorithm succeeded due to its easy parallelization and the simple treatment of implicit
feedback (implicit feedback, as opposed to explicit user-provided ratings, is easier to obtain and
commonly regarded as more indicative of real user interests). ALS reduces a non-convex formula-
tion to a series of iterations alternating easy quadratic problems. Spark’s memory usage maps nicely
into the paradigm of iterative machine learning algorithms, and so the ALS recommendation module
of mllib has seen widespread industry adoption, while methods based on MapReduce are starting to
be discontinued.

Bayesian Personalized Ranking [Ren+09] also works naturally with implicit feedback. In the item
recommendation problem, we are usually interested in creating a user-specific ranking of items that
the user might be interested in. Alternating least squares, for instance, tries to predict a rating
for each user and item by factoring a rating matrix into two matrices consisting of user and item
vectors, whose elements correspond to ”latent” factors that explain user preferences. A ranking
can then be obtained by decreasingly ordering the predicted ratings. On the contrary, BPR directly
optimizes a ranking measure >u for items that is effectively translated to learning the parameters
of an underlying recommendation model. In particular, BPR provides a generic, model-agnostic
optimization criterion derived from a Bayesian analysis of the ranking problem. This can then be
learned via stochastic gradient descent over bootstrapped samples of triples (user, item seen, item
not seen).
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While BPR can be used with different recommendation system schemes (in the original paper, matrix
factorization and kNN are shown), we have settled on using MF (matrix factorization). Our solution
in Spark distributes all the available feedback across the cluster, where each machine is responsible
for a fraction of the ratings and the users. Parallel stochastic gradient descent is performed to learn
the parameters of MF, which are a user matrix and an item matrix. The former tends to be much
bigger and so it is distributed among the cluster. The latter, normally small, is shared across machines
for reasons that will be explained in section 3.

Finally, note that the success and widespread use of alternating least squares in the context of massive
datasets is not by chance. This work does not try to outperform the already high scalability of the
ALS implementation in Spark, but rather provide access to a different technique that can benefit
from a distributed framework and can thus be applied in a scalable way.

2 Bayesian Personalized Ranking from Implicit Feedback

In this section, we describe BPR as explained in [Ren+09]. We are interested in the task of providing
a user with a ranked list of recommended items. Hence, we want to learn a personalized ordering
>u for each user u. We consider U the set of all users and I the set of all items. The source of
information is implicit feedback, this is, past interactions of users with items, which we formalize
as S ⊆ U × I . We assume that >u meets the properties of a total order (totality, antisymmetry and
transitivity). We also define I+

u := {i ∈ I : (u, i) ∈ S} and U+
i := {u ∈ U : (u, i) ∈ S}.

In order to learn >u, we need to reconstruct parts of it from the available data. We assume that if
(u, i) ∈ S, this is, user u has viewed item i, then u prefers this item over all other non-observed
items. We do not assume any preference for items both viewed or both non viewed. Hence, we can
define our training set DS as the set of all (user, item+, item−) triples:

DS := {(u, i, j)|i ∈ I+
u ∧ j ∈ I \ I+

u }

We derive now the optimization criterion. Consider Θ the set of parameters of the underlying model
class (for MF, a user and item matrix). The Bayesian formulation of finding >u is to maximize the
posterior probability

p(Θ| >u) ∝ p(>u |Θ)p(Θ)

BPR makes some key assumptions. First, it assumes that users act independently of each other.
Second, that the ordering of each pair of items is independent of the ordering of the other pairs.
Hence, we can write

p(>u |Θ) =
∏
u∈U

p(>u |Θ)

=
∏

(u,i,j)∈U×I×I

p(i >u j|Θ)δ((u,i,j)∈DS) · (1− p(i >u j|Θ)δ((u,j,i)/∈DS))

=
∏

(u,i,j)∈DS

p(i >u j|Θ)

where δ is the indicator function and we have used antisymmetry and totality of >u to arrive at the
last step. Finally, it is necessary to model p(i >u j|Θ) in a way that it is a probability and the total
order is respected. BPR defines this as

p(i >u j|Θ) := σ(x̂uij(Θ))

where σ(x) = 1
1+e−x is the well-known sigmoid function and x̂uij is a real-valued function of the

model parameter Θ which captures in a quantitative way the preference that user u has for item i
over j. For instance, for the case of matrix factorization as the underlying model, we define
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x̂uij := x̂ui − x̂uj

where x̂ui is the specific rating predicted for user u and item i. In MF, we are estimating an |U |× |I|
rating matrix X by using two low-rank matrices, W (with size |U |×k) and H (with size |I|×k), so
that X̂ = WHt, with k the number of latent factors. Since the rows of W and H are seen as feature
vectors in the latent space, we have

x̂uij := x̂ui − x̂uj = wu · hi − wu · hj

where wi is the ith row of W and hj is the jth row of H .

To complete the Bayesian analysis, we define our prior p(Θ) as a normal distribution with zero mean
and covariance matrix ΣΘ, where we set ΣΘ = λΘI for convenience

p(Θ) ∼ N(0,ΣΘ)

Putting all together, our optimization objective is then

BPR−OPT : = ln p(Θ| >u)

= ln p(>u |Θ)p(Θ)

= ln
∏

(u,i,j)∈DS

σ(x̂uij)p(Θ)

=
∑

(u,i,j)∈DS

ln σ(x̂uij)− λΘ‖Θ‖2

2.1 BPR - Learning

BPR has a differentiable objective, and so gradient descent can be used for maximization. However,
DS has O(|S| · |I|) training triples, which can make each traversal through the data infeasible.
Hence, stochastic gradient descent (SGD) seems to be a more sensible choice. Since originally we
only have positive feedback elements (this is, pairs user-item (u, i)), we need to bootstrap triples
from DS before performing the optimization. This yields a simple learning procedure consisting of
drawing training triplets from DS and performing gradient updates until convergence.

For each triplet (u, i, j), the stochastic gradient descent update is given by

Θ← Θ + α

(
e−x̂uij

1 + e−x̂uij
· ∂
∂Θ

x̂uij + λΘΘ

)
where in the case of matrix factorization

∂

∂θ
x̂uij =


(hif − hjf ) if θ = wuf
wuf if θ = hif
−wuf if θ = hjf
0 else

3 Distributed Bayesian Personalized Ranking - DBPR

Our implementation of BPR distributes the data and the user matrix across the cluster. This allows
the algorithm to scale both in the number of positive ratings and the number of users to model.
The item matrix cannot be distributed around the cluster and must sit in memory in every machine
for reasons that will be clear soon. However, this is not a major drawback since we normally face
situations where the number of items is significantly smaller than the number of users (consider for
instance an online retailer that needs to recommend a fixed number of products to millions of users).
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Algorithm 1 Distributed Bayesian Personalized Ranking
1: procedure DBPR(Array[Tuple](user, item) feedback)
2: randomly initialize item matrix H
3: broadcast H to all workers
4: randomly initialize user matrix W
5: group (W , feedback) by user and distribute across cluster
6: for i = 1 → numIterations do
7: for worker in parallel do
8: for j = 1 → numSamples do
9: sample triplet from local DS

10: update distributed W and local H
11: end for
12: end for
13: reduce H from workers and compute new H in driver as the average
14: broadcast H to all workers
15: end for
16: return (W , H)
17: end procedure

The algorithm can be seen in Algorithm 1. First, the ratings (feedback in the form (user, item)) is
grouped by user and distributed across the workers, so that every machine is responsible of updating
certain user vectors. Considering that we may have an enormous number of users and feedback, and
that we need to sample negative elements for every user to effectively learn its ranking, it makes
sense to parallelize this bulky stochastic gradient descent process, with the advantage that different
machines can focus on different users with no overlap. Note that since we will sample many negative
items per user, and since each worker is responsible of many users, we will have that each machine
will update most of the item vectors (in expectation) after SGD. Hence, it is not really advantageous
to come up with an optimized distributed update of item blocks such as that performed by ALS.

The fact that the item matrix is not distributed makes it necessary for the algorithm to reconvene
from time to time to average the different item matrix updates performed by the workers. Hence,
DBPR runs in an iterative way, where at the end of each iteration a reduce process is performed to
compute the new averaged item matrix, which is then sent back to every worker in the next iteration.

Hence, for each iteration we will have a communication overhead in the network of O(m · |I|k),
wherem is the number of machines and k the number of latent factors. We will see however that the
algorithm does not need many iterations for convergence. Nevertheless, since this communication
cost might be dominant, it is in the best of our interest to perform as many SGD iterations in each
worker before reducing and recomputing the item matrix after each iteration.

Inside each worker, the number of samples from DS to perform SGD over is a parameter of the
algorithm. In order to obtain samples in a fast way, DBPR does not check that the negative item
is actually an item that the user did not view. Doing this in an effective way would require extra
and costly data structures (i.e., many expensive lookups), while the probability of a collision is
normally negligible (normally recommender systems deal with thousands of items, while users have
interactions with only a tiny fraction of them). Furthermore, the action of selecting two positive
items i and j and sampling them as i >u j does not break any assumption of the algorithm since we
have no information about which item the user might actually prefer. In our experiments, checking
that the negative sampling is actually negative had no effect at all in both convergence rate and final
results.

4 Evaluation

In order to evaluate our results, we compare learning with DBPR to the default ALS recommender
provided in Spark.

4.1 Dataset

We utilize the Million Song Dataset Challenge dataset [Ber+11]. This dataset contains the listening
history of 110,000 users with the objective of recommending songs that the users like. Although
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the challenge is originally a prediction one (trying to predict what songs the users actually listened
to, hidden in a holdout set), we use the original training data of the challenge for both training our
model and creating a separate test set to evaluate our recommendations. The original data contains
the number of times each song was played by the user, and although this information could be used
to better learn interest, we restrict ourselves to the original setting of the paper where the feedback
consists of just the presence of an interaction with an item.

Similarly to the evaluation procedure followed in [Ren+09], we draw a subsample from the original
dataset such that every user has at least 10 items (∀u ∈ U : |I+

u | ≥ 10) and each item has at least 10
users (∀i ∈ I : |U+

i | ≥ 10).

4.2 Evaluation Methodology

As evaluation methodology, we utilize AUC (area under the curve) as a metric over a test set Stest.
For each user, we remove a positive entry from I+

u and add it to Stest, while the rest of entries are
used for training in Strain. DBPR is then run over Strain and the resulting personalized ranking is
evaluated with the average AUC statistic over all users:

AUC =
1

|U |
∑
u

1

|E(u)|
∑

(i,j)∈E(u)

δ(x̂ui > x̂uj)

where δ is the indicator function and

E(u) = {(i, j)|(u, i) ∈ Stest ∧ (u, j) /∈ (Stest ∪ Strain)}

The metric is measuring, for each item we know a user has interacted with, what fraction of times
it would be ranked before all the elements he or she did not interact with. Hence, random guessing
would return an AUC of 0.5, while the highest score achievable is 1.

4.3 Results and discussion

In Figure 1 we can see the results of the algorithm using different numbers of samples from DS

per worker and iteration. This parameter is critical since it heavily affects the number of iterations
needed until convergence. We utilize 4 workers in Spark standalone mode in all our experiments.
We can see how a regime of 20,000 samples per worker and iteration takes a long time to converge,
although it obtains decent results from iteration 1. On the other hand, increasing the number of
samples per worker and iteration to 2,000,000 makes the algorithm achieve convergence in the first
iteration, practically becoming parallel stochastic gradient descent [Zin+10]. Although we antici-
pated, due to the interdependency of users and items in collaborative filtering models, that different
workers would need gradient updates of the items in different machines, it might well be that the
independence assumptions of BPR effectively break this interdependency. Further studies would
be needed to check if this is always the case, which would allow the algorithm to run in just one
iteration.

In any case, it is clear that by setting a high enough number of samples, we can achieve convergence
in a small number of iterations, thus allowing for fewer H matrices sent through the network. Also,
we note that BPR consistenly obtains a better AUC result (around 0.73) than ALS upon convergence.

We also provide a cursory investigation into the effect of the latent dimension of the factorization
on the final AUC metric, as can be seen in Figure 2. In particular, we fix a number of iterations, 10,
fix a size of DS = 10, 000, and examine the effect on final AUC as a function of varying k. Note
that BPR peaks at a slightly higher k, but still within the realm of what is considered standard in
industrial settings. Both ALS and BPR need a big enough number of factors to explain the variability
in the data, while we also note similar overfitting behavior when the rank is increased too much.

Finally, due to the fact that we tested our distributed version on one multi-core machine, we do not
present any empirical studies of communication times in comparison to ALS, and we leave that to
further studies. In particular, the authors are interested in comparing computation time versus |DS |
and the number of partitions (for BPR) against the number of blocks in ALS in a cluster setting. It is
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to expect however that ALS will run faster and with less network usage due to the fact that the inner
loop can be distributed across both the users and items with minimal communication cost.
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Figure 1: Test AUC (Area Under Curve) as a function of k (latent dimension) and the number of
considered ratings per iteration and worker
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Figure 2: Test AUC (Area Under Curve) as a strict function of k (latent dimension)

5 Conclusion

We have developed a distributed version of Bayesian Personalized Ranking, a model-agnostic rec-
ommendation framework that directly learns a personalized ranking for every user from implicit
feedback. We have implemented it by using an underlying matrix factorization model and allowing
different workers to perform sampling and stochastic gradient descent in a parallel way. Further-
more, the algorithm easily scales to millions of users due to the fact that the user matrix is distributed
across the cluster. Our version of BPR obtains better results than Spark’s default ALS recommender
in an offline evaluation. However, it is important to note that our model needs the item matrix to be
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present in memory in every worker, which is a very reasonable assumption but does not facilitate
high scalability in the number of items.
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