
Parallel Sparse K-Means for Document Clustering

Victor Storchan, CME 323 (R. Zadeh)

June, 2016

Abstract

Through this paper, a Parallel Sparse K-Means procedure is implemented with a par-
ticular care on improving the scalability and the efficiency of the regular K-Means when
one wants to apply it to sparse data sets. As an example, the method is implemented and
tested on the 20 Newsgroups data set. All the code used in the paper can be found at
https://github.com/victorstorchan/doc_clustering

Contents
1 Introduction and related work 2

2 K-Means as a maximisation problem 2
2.1 Some measures to set the problem . 2
2.2 The additivity of features’s dissimilarities . 4
2.3 Depth and Work for SK-Means algorithm . 5

3 K-Means with a K-Means parallel initialization 6
3.1 Deriving K-Means|| . 6
3.2 Depth and work for K-Means|| . 7
3.3 The K-Means algorithm with parallel initialization 7
3.4 Depth and work for K-Means with parallel initialization 8

4 The Parallel Sparse K-means algorithm 8

5 PSK algorithm on a cluster 8

6 Running the algorithm on the 20 Newsgroups Data Set 9
6.1 Description of the Data Set . 9
6.2 Cleaning the Data Set . 9
6.3 The TF-IDF model . 10
6.4 Running Parallel Sparse K-Means . 11

7 Conclusion 13

8 References 13

1

https://github.com/victorstorchan/doc_clustering

Parallel Sparse K-Means for Document Clustering

1 Introduction and related work
The partitioning of data is a problem of combinatorial optimization. The problem is to divide
N points of a p dimensional space into K clusters by minimizing a cost function. The distance
of a point to the mean of the points of its cluster will be considered. In particular, document
clustering can be viewed as an application of this method. Given a bunch of documents we want
to be able to recover common patterns among them, based on the words they contain. The
different labels are the topics of the documents (recreational, talk, science etc..). To transform
the different documents into points of a p dimensional space, we will use the famous TF-IDF
model is used from MLlib and implemented with the hashing trick. Rather than updating a
dictionary, a vector of a pre-defined length (here, p = 216) is built by applying a hash function
h to the words (features) of the documents. Then using the hash values as indices, the related
values at those indices is updated. The clustering package of MLlib contains in particular, a
list of non-supervised algorithms for which the goal is not to predict a variable, but to gather
the data points into clusters with strong similarity. The framework of the work is the following:
our goal is to efficiently classify a bunch of N documents . N = 11314. By the term "efficiently",
what we mean here is "quickly and accurately". To this purpose, we will develop an algorithm
(PSK-Algorithm) which takes into account both the sparsity of the data points inerent to a
TF-IDF model (section 2), but also which takes into account the quantity of the data to address
the scalability of our algorithm (sections 3 and 4). As a consequence, a parallel initialisation
of K-Means will be plugged into a Sparse version of K-Means. Although at some point in the
PSK-algorithm, the classical K-Means has to be run in paralell, this problem is embarrassingly
parallel and we will not focus too much on this part, as it is not of critical need for our numerical
results. We only give an overview of the implementation in MapReduce in section 3. To run
the experiment, we will use the 20 Newsgroups data set in section 5. As the Sparse K-means
algorithm is described in [2] and the parallel initialization for K-Means is described in [1], the
novelty of the work is to merge these two parts and to parallelize the resulting algorithm as well
as we can, to implement a procedure which is scalable, fast, and specific for sparse data.

2 K-Means as a maximisation problem

2.1 Some measures to set the problem
First, let’s define a couple of measures. The definition basically states what quantity is measured.

• The overall between cluster dissimilarity:

OBCD(C) =

K∑
k=1

∑
i∈Ck

∑
i′ /∈Ck

d(xi, xi′)

• The overall total cluster dissimilarity:

OTCD =

N∑
i=1

N∑
i′=1

d(xi, xi′)

It is the sum of dissimilarities of all pairs, so it does not depend on C.

• The overall within cluster dissimilarity:

OWCD(C) =

K∑
k=1

∑
i,i′∈Ck

d(xi, xi′)

2

Parallel Sparse K-Means for Document Clustering

Prop: A simple computation shows OWCD(C) = OTCD − OWCD(C). Let |Ck| = nk. To
avoid the case where n1 = n2 = ... = nK while minimizing OWCD with respect to C we now
define:

• The within cluster dissimilarity:

WCD(C) =

K∑
k=1

1

2nk

∑
i,i′∈Ck

d(xi, xi′)

Then the goal of K-means is to find an optimizing partition of centers C∗ such that

C∗ = argminC:|C|=KWCD(C)

Let’s mention here the particular case of interest when d is the L2 distance: then, we will
define

• The within cluster sum of squares:

WSS(C) =

K∑
k=1

1

2nk

∑
i,i′∈Ck

‖xi − xi′‖2

Acomputation gives:

WSS(C) =

K∑
k=1

∑
i∈Ck

‖xi − xk‖ where xk is the cluster mean for cluster Ck.

• The total cluster dissimilarity:

TCD =
1

2N

N∑
i=1

N∑
i′=1

d(xi, xi′)

Then,
BCD(C) = TCD −WCD(C)

We deduce from these definitions that:

C∗ = argminC:|C|=KWCD(C) = argminC:|C|=K(TCD −BCD(C)

= argminC:|C|=K(−BCD(C))
= argmaxC:|C|=KBCD(C)

Eventually:

• The total sum of squares:

TSS =
1

2N

N∑
i=1

∑
i′ = 1

N‖xi − xi′‖2

• The between sum of squares:

BSS(C) =

N∑
i=1

‖xi − x‖2 −
K∑
k=1

∑
i∈Ck

‖xi − xk‖2

Then, TSS = BSS(C) +WSS(C) and

C∗ = argmaxC:|C|=KBSS(C)

3

Parallel Sparse K-Means for Document Clustering

2.2 The additivity of features’s dissimilarities
Without loss of generality, we will make the following assumptions for our distance: let dj(xi, xi′)
be the distance (or dissimilarity) between points xi and xi′ with respect to the jth feature. We
suppose that d(xi, xi′) =

∑p
j=1 dj(xi, xi′).This assumptions is verified when d is the distance

derived from the L2 norm (the distance of interest). As a consequence, a simple computation
shows that:

WCD(C) =

p∑
j=1

WCDj(C)

TCD(C) =

p∑
j=1

TCDj(C)

BCD(C) =

p∑
j=1

BCDj(C)

where WCDj , TCDj and BCDj only depend on the jth feature (ie jth column of the matrix
of predictors X). As a consequence, the idea is that BSSj(C) can be seen as the contribution
of the jth feature to the clustering. Thus, we will divide the set of features into two subsets:
the clustering features which have large values of BSSj and the noise features which have small
values of BSSj . Physically, a noise feature can be thought as a feature that does not change
from cluster to cluster. In the NLP case, it can be a word whose frequency does not vary much
from a cluster to another. We are now ready to derive the Sparse K-means problem as a convex
problem: consider the following problem:

max|C|=K,w

p∑
j=1

wjBSSj(C)

such that


‖w‖1 ≤ l1

‖w‖22 ≤ 1

wj ≥ 0

The idea is that only clusturing features will receive nonzero weights. Moreover, the sparsity
of w is garanteed for small values of the parameter l1 ∈ {1, ...,

√
p}. Without the L2 condition,

we can show that at most one element of w would be nonzero (the wj relative to the biggest
clustering feature). Of course, one wants to avoid this case.
Now let’s derive an algorithm to solve this particular relaxed convex problem. Consider the
following procedure: The analytical solution of the problem in line 6 of algorithm 1 is the famous
water-filling described in the Boyd on page 245 (see [8]), derived from the KKT conditions. For
the sake of clarity, let state what is the solution w(∆∗) of the problem:

w(∆) =
(D −∆1)+
‖(D −∆1)+‖2

where

∆∗ =

 0 if ‖w(0)‖1 ≤ l1

Solution of ‖w(∆)‖1 = l1 otherwise

4

Parallel Sparse K-Means for Document Clustering

Algorithm 1 SK −Means(K)

1: procedure SK-Means
2: w ← 1

p [1, 1, ..., 1]T

3: Repeat (until convergence):
4: Step (a):
5: Y := [

√
w1X1, ...,

√
wpXp]

6: for a given w, perform K-means on the transformed data set Y:
7: solve C̃ = argmin|C|=KWSSy(C) whereWSSy(C) is the within cluster sum of squares
8: on Y.
9: Step (b):

10: For a given C̃, maximize with respect to w: set D = [BSS1(C̃), ..., BSSp(C̃)] and
11: solve:

w̃ = maxww
TD

such that


‖w‖1 ≤ l1

‖w‖22 ≤ 1

wj ≥ 0

As ‖w(∆)‖1 is a piecewise linear and increasing function, the equation above has a unique
solution.
Remark: Let’s recall that the goal of SK-Means is to find

argmax|C|=K

p∑
j=1

wjBSSj(C) = argmin|C|=K

p∑
j=1

wjWSSj(C).

Or a simple computation implies that WSS(C) =
∑p
j=1 wjWSSj(C). It is directly derived

from the definitions. As a consequence, SK-Means tries to recover argmin|C|=KWSSY (C)
Moreover, if l1 ≤ 1, then the L2 constraint is redundant and in that case, w = l1ej0 where
j0 = argmaxjBSSj(C) ie 100% of the weight will be put on the feature with the largest BSSj(C).
On the other hand, if l1 >

√
p then, the L1 constraint is redundant and all the features will

have nonzero weights. As a consequence, depending on the "degree of sparsity" we will choose
l1 ∈ [1, ..,

√
p].

2.3 Depth and Work for SK-Means algorithm
On a PRAM model, let’s first compute the time complexity of part (a) of SK-Means:

• work of step (a): W (N,K, p) = WK−Means parallel +WtransformX→Y

• Depth of step (b): D(N,K, p) = DK−Means parallel + DtransformX→Y where
DtransformX→Y = O(1).

The time complexity for part (b) is the following:

• work of step (b): computing ∆∗: Solving ‖w(∆)‖1 = l1 is solving
∑p
j=1 wi = l1, so it is

setting wp = l1 −
∑p−1
j=1 wi. So using prefix sum, the work is O(p). Then computing D is

O(Np) work and computing w(∆) is another O(p).

5

Parallel Sparse K-Means for Document Clustering

• Depth of step (b): computing ∆∗: with prefix-sum, the depth is O(log(p)). Then computing
D is O(log(N) + log(p)). Computing w(∆) is O(1) depth.

3 K-Means with a K-Means parallel initialization

3.1 Deriving K-Means||
For a point x ∈ X and a subset Y ⊂ X, we adopt the following notations:

• d(x, Y) = miny∈Y ‖x− y‖2

• mean(Y) = 1
|Y |
∑
y∈Y y

• φY (C) =
∑
y∈Y d

2(y, C) =
∑
y∈Y mini=1,.,K‖y − ci‖2 is the cost function of Y .

The goal of K-Means, can be formulated as minimizing φX(C) over C. Let’s call the optimal
solution C∗. Note that finding φ∗ = φX(C∗) is NP-hard. We say that C is an α-approximation of
C∗ if φX(C) ≤ αφ∗. It is worth to note that any centers set C can be identify with a clustering:
x ∈ X is in Cj if j = argmini‖x − ci‖. In order to see the real improvment of the K-Means||
algorithm, let’s first derive quickly the sequential K-Means++ algorithm, which provides a good
initialization step but which can not be parallelized. It is a 8log(K)-approximation algorithm.

Algorithm 2 K −Means+ +

1: procedure K-Means++
2: C ← Sample one point uniformly at random in X
3: while |C| < K do
4: Sample x ∈ X with probability d2(x,C)

φX(C)
5: C ← C ∪ {x}

The density of probability in K-Means++ is quantifying how far the point x is from the
previously selected center. It has as many chances to get selected as it is far from them. The
density is renormalized to sum to 1. As K-Means++ is sequential by nature, we follow the idea of
[1] to implement the K-Means|| algorithm for a good initialization of the clusters. This algorithm
will then be plugged in the initialization step of the SK-Mean algorithm. An oversampling factor
l is needed. One can think about l as Θ(K).

Algorithm 3 K −Means||
1: procedure K-Means||
2: C̃ ← Sample one point uniformly at random in X
3: ψ ← φX(C̃)
4: for O(log(ψ) times do
5: C ′ ← Sample each x ∈ X independently with probability ld2(x,C̃)

φX(C̃)

6: C̃ ← C̃ ∪ C ′
7: for x ∈ C̃ do
8: set wx = # { points in X closer to x than any other points in C̃ }
9: Recluster the weighted points in C̃ into K clusters: use K-Means++ on

10: {w1c1 ∈ Rp, ..., w|C̃|c|C̃| ∈ Rp}. Return C

6

Parallel Sparse K-Means for Document Clustering

Since |C| � N , ie the number of clusters K is supposed significantly smaller than the data
size, we suppose that reclustering on a single machine using K-Means++ is possible and fast.

Theorem: If an α-approximation algorithm is used for the reclustering on a single ma-
chine, then, K-Means|| is an O(α)-approximation algorithm to K-Means. In particular if
K-Means++ is used, then α = log(K).

3.2 Depth and work for K-Means||
Suppose that concurrent write is legitimate. Let’s now derive the work and the depth for algo-
rithm 3 (K-Means||):

• Line 2: D(N, C̃, p) = W (N, C̃, p) = O(1)

• Line 3: computing φX(C̃), W (N,K, p) = O(|C̃|2 ∗ N2 ∗ p) (p for the dot product, K for
taking the minimum over a set of length |C̃|, and N to compute the sum. As we need to do
it for each tuple (ci, x) ∈ C̃ ∗X, we squared the relevant quantities.
The depth is D(N, C̃, p) = O

(
log(p) + log(C̃) + log(N)

)
• Line 5: Need to compute ld2(x,C̃)

φX(C̃) : We can store from the previous step the denominateur.

So one just needs to compute the numerator: W (N, C̃, p) = O(|C̃| ∗ p)
D(N, C̃, p) = O(log(p) + log(|C̃|)

• Line 9: Depth: depth of K-Means++.
Work: work of K-Means++ plus |C̃| for weighting the centers.

Then let’s derive the work and the depth of K-Means++:

• Line 4: Depth: D(N, C̃, p) = O
(
log(p) + log(C̃) + log(N)

)
+O

(
log(p) + log(|C̃|)

)
= O

(
log(p) + log(C̃) + log(N)

)
Work: W (N, |C̃|, p) = O

(
|C̃|2 ∗N2 ∗ p) +O

(
|C̃| ∗ p

)
= O

(
|C̃|2 ∗N2 ∗ p

)
.

As line 5 has to be run |C̃| times, the total work for K-Means++ is O
(
|C̃|3 ∗N2 ∗ p

)
.

As a consequence, the total work of K-Means|| is O
(
log(ψ) ∗ |C̃|3 ∗ N2 ∗ p

)
and the total

depth for K-Means|| is O
(
log(p) + log(|C̃|) + log(N)

)
.

3.3 The K-Means algorithm with parallel initialization
The idea is simple. Intuitively, the initialization exploits the fact that a good clusturing should
be enough spread out: rather than choosing each time a new center at random, let’s derive a
good density of probability to choose a new cluster center with a pealty on the points which are
too close from the previously selected centers. The well known K −Means + + algorithm is a
O(log(K)-approximation algorithm of the optimum. It is even a constant approximation if the
data is known well clusterable).

Remark: As it is mentionned in the introduction, the K-Means procedure is embarrass-
ingly parallel, and implementing it with a MapReduce framework has already been studied a
lot. As a reference, one can read [3] and [4]. The global idea is to do the classification during
the map step by parallelizing over the data and computing the means during the reduce phase
by parallelizing over the centers. From a practical point of view in python, this can be easily

7

Parallel Sparse K-Means for Document Clustering

Algorithm 4 K −Means with parallel initialization
1: procedure K-Means with parallel initialization
2: Initialize with K-Means||.
3: Repeat (until convergence):
4: Step (a):
5: ∀i set ci := argminj‖x(i) − µj‖2
6: Step (b):

7: ∀j, µj :=

∑N
i=1 1{c(i)=j}x

(i)∑N
i=1 1{c(i)=j}

done using the K-means function of sklearn.cluster module and specifying the parameter
n_jobs=-1 to use all the CPUs. The type of the matrix of prediction has then to be any sparse
matrix class.

3.4 Depth and work for K-Means with parallel initialization
• Line 2: Work WK−Means|| and depth DK−Means|| of K-Means||, see subsection 3.2.

• Line 5: Work isW (N, |C̃|, p) = O
(
|C̃|∗p∗N

)
and depth isD(N, |C̃|, p) = O

(
log(p)+log(|C̃|)

)
• Line 7: W (N, |C̃|, p) = O(|C̃| ∗N) and D(N, |C̃|, p) = O

(
log(N)

)
Let’s suppose that we run step(a) and step(b) R times. Then the total work of K-Means is
O
(
WK−Means|| +R ∗ |C̃| ∗ p ∗N

)
.

The total depth is O
(
DK−Means|| +R ∗ (log(p) + log(|C̃|) + log(N))

)
.

4 The Parallel Sparse K-means algorithm
Now, we are ready to describe the PSK-Algorithm.

Algorithm 5 PSK −Algorithm
1: procedure PSK-Algorithm
2: Run SK-Means with modified step (a):
3: When performing K-means on the weighted data, initialize the procedure with
4: K-Means|| and run the K-Means iterations in parallel using as many CPUs as
5: available.

5 PSK algorithm on a cluster
Let’s say, for this section that we are using a cluster composed of s machines connected to a
master machine. Then, in a MapReduce framework, let’s analyse first the communication cost for
standard K-means: First, the master machine reads the clustering center files and then shuffles
it to the machines. Then, each mapperi for i ∈ {1, ..., s} assigns a cluster center for each points
x ∈ Xi ⊂ X and record the local minimum distance d(ci, Xi). It results in s vectors of length k
that have to be reduced (the reducers compute the global sums, update the centers and send this

8

Parallel Sparse K-Means for Document Clustering

data to all the processors with an MPI_AllRedude procedure for example). As the local min
are vectors of length K for every s machines, the communication cost is O(sk). The reduce-key
space is N

s .
Let’s now look at the MapReduce implementation of the initialization step k−means||, assuming
that |C̃| is fitting in memory. On line 5 of algorithm 3, each mappers sample in their subsapces
Xi in parallel. They are also computing φXi(C̃) and the reducer adds these values to compute
the global φX(C̃). The shuffle cost time is her O(s).

6 Running the algorithm on the 20 Newsgroups Data Set
For this section, all the code which was used to produce the different results can be found at
the following url: https://github.com/victorstorchan/doc_clustering. The prerequisite
to run the different part of the pipeline are: Pyspark, SparkR, Sparcl (where SK-Means is
implemented), and rPython (to shuffle data from python to R).

6.1 Description of the Data Set
The 20 Newsgroups Data Set can be downloaded here: http://qwone.com/~jason/
20Newsgroups/. The algorithm will be running on a subset of this Data Set, gathering
11314 emails. These emails are labeled into different classes and subclasses as follow:

computer recreational science talk.politics
comp.graphics rec.autos sci.crypt talk.politics.misc
comp.os.ms-windows.misc rec.motorcycles sci.electronics talk.politics.guns
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med talk.politics.mideast
comp.sys.mac.hardware rec.sport.hockey sci.space
comp.windows.x
misc.forsale religion
misc.forsale talk.religion.misc

alt.atheism
soc.religion.christian

As a consequence, we can see how well our clustering algorithm is performing on one
hand on the 7 "large" classes (comp, talk, rec, alt, soc, misc, and sci) and on the other hand
on the 20 "more specific" classes. As it will be shown from the experiment later, we have to
deal with a simple tradeoff: larger classes means a better overall accuracy but not a very precise
clustering, and more specific classes means a better clustering with more chances to fail to
predict the good specific label.

6.2 Cleaning the Data Set
As a reminder, all the code which has been used here is available at https://github.com/
victorstorchan/doc_clustering. First, the data is put into an RDD vector. As a results the
emails are split and distributed on the available network. Parsing the Data Set, is always the
very first step of the work. To this purpose, we will remove the ponctuation, the figures, the
capital letters, we will remove the stop words and the words which are present just once in all
the emails (obviously, this kind of words will not give any information about a particular email).
Moreover, we remove the words of length 1 and we return a tuple of the remaining words, and
their count over all the emails. At the end of this parsing step, here is a quick view of the data.

9

https://github.com/victorstorchan/doc_clustering
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://github.com/victorstorchan/doc_clustering
https://github.com/victorstorchan/doc_clustering

Parallel Sparse K-Means for Document Clustering

Each element of the RDD (the former emails) is now a list of tuples of (words, count) where the
count, is now the count of occurence of the word in a particular email (so it can be 1):
[(’ink’, 4), (’negative’, 1), (’hand’, 3), (’compared’, 1), (’argues’, 1), (’tendentious’, 2), (’ap-
pendix’, 2), (’laurel’, 1), (’centuries’, 1), (’goes’, 1), (’kierkegaard’, 1), (’atheisten’, 2), (’deluxe’,
1), (’pregnant’, 1) etc...]
These counts are just here to give us an idea about which features would be relevant for classi-
fication, and which ones are not.

6.3 The TF-IDF model
From each email, we want to produce a vector based on the parsed information (ie remaining
words) contained in the email. To this purpose, the famous TF-IDF model is used with a
dimension of 216. This statistical measure is used to evaluate the significance of a word within a
particular document comparatively to a collection or a corpus. To have a better insight on the
method, one can find useful information at https://en.wikipedia.org/wiki/Tf%E2%80%93idf.
The vectors are created with the modules IDF and HashingTF of pyspark.mllib.feature. Of
course, as an email only contains a few words relative to an entire vocabulary, the resulting vectors
are sparse vectors. We will exploit this fact while building the Parallel Sparse K-Means algorithm.
These sparse vector are then stored on the SparseVector format of pyspark.mllib.linalg. Note
that using a TF-IDF model is a bottleneck for streaming clustering of a huge set of documents
because one needs to know the whole corpus vocabulary to implement TF-IDF. [5] gives a way
for solving this issue. In practice, after the TF-IDF transformation, the dimension of the matrix
of prediction is 1134 ∗ 216 so we can run a PCA. For this extra step of preprocessing, we did a
Truncated SVD from the package sklearn.decomposition. However, using PCA has a number of
disavantages: first of all, the resulting matrix of reduced dimension is not sparse anymore so we
will not use the PSK algorithm on it. Additionally, there is no garantee that we will achieve best
separation of clusters (ie minimum of the cost function) with this extra step. To conclude, as we
stored a sparse representation of the matrix of prediction, it may not fit in memory. An other
choice would be to run distribted PCA see [6].

Figure 1: TF-IDF gives a spatial representation of the text data

10

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Parallel Sparse K-Means for Document Clustering

6.4 Running Parallel Sparse K-Means
We are using several packages: First, the parallel initialization of PSK-algorithm is done with
the implementation of MLlib. Then, we are shiffting all the data from python to R. Actually, to
run the SK-Means, we will use the package Sparcl written in R by Witten and Tibshirani [2].
To shift the data, we shift the 11314 dictionaries corresponding to every emails by first saving
them on the Hard Drive, and then loading them into R. All the code is written in python, and
the library rPython is called from R to load python files from the R console. Indeed,it is too
computationally heavy to first compute a dense matrix of prediction with pyspark then save
it on the Hard Drive and shuffle it to the R console: The (11314 ∗ 216) matrix takes 18Go of
memory to be save as a ".txt" file for example. The graph below shows the whole pipeline used
for this work. Notice that in practice, the PSK-Algorithm was trained on a subset of the 11314
samples because of computational time cost relative to loading the matrix of prediction in R
with rPython.

Row text from emails

Pre-processing 1:Parsing

Pre-processing 2: TF-IDF

Pre-processing 3: PCA

KMeans
with Kmeans||

KMeans
with random

KMeans
with Kmeans+ +

PSK-Algorithm

Here are the numerical results that can be obtained: first we compare the results of the
standard K-Means, with the several initializations, for the large classification (K = 20) and
then, for the more specific one (K = 7). The accuracy is the rate of well labeled points.
Moreover, the time for the procedure to finish is also recorded:

type of initialization accuracy for K=20 total time
random 0.4394 84.6117
K-Means++ 0.6124 156.9197
K-Means|| 0.6124 90.6363

One can clearly see the advantage of a K-Means|| initialization relatively to a random
initialization both in terms of speed and accuracy. Moreover, K-Means|| is faster than
K-Means++ but achieve the same accuracy. Notice that when K-Means|| is running, the
initializationsteps, which is the number of steps in K-Means|| is fixed to r = 10 and l = K. Now
here are the results for K = 20:

11

Parallel Sparse K-Means for Document Clustering

type of initialization accuracy for K=7 total time
random 0.5741 57.9025
K-Means++ 0.6718 74.8596
K-Means|| 0.6718 60.7070

To the sake of comparison between the two cases, the chart below summarize the information:

It can be noticed, that in this case, random is faster
than K-Means|| arguably because the Initialisation-
Steps parameter is fixed to 10 for K-Means|| and then
for a small K random is faster. But the difference in
terms of accuracy is obious: K-Means|| beats random
again. Moreover, as a kind of benchmark, a super-
vised learning classifier was implemented to try to
establish how well the PSK algorithm was behaving.
Using the same parsing, we ran a NaiveBayes Clas-
sifier. With the same parsing, the recovery is 0.4515
and one can improve the parsing to achieve around
0.5 of accuracy. Now we can study the runtime as the
number of data points increase. We will sample uni-
formly in our data a percentage of data points and we
will run the PSK algorithms, and Parallel K-means,
with random initialization and K-Means|| initializa-
tion.

1 2

0.45

0.5

0.55

0.6

0.65

Case 1: K is 20 | Case 2: K is 7
A
cc
ur
ac
y

Random K-Means++ K-Means||

Now, in order to see how the 3 types of initializations are behaving with respect to the
size N of the data, we sample from the original data set a percentage of points, uniformly, to
have the same proportion of points in each cluster. The results are shown in Figure 2:

Figure 2: Runtime of Initializations with respect to Data size

12

Parallel Sparse K-Means for Document Clustering

7 Conclusion
While the scalability of the parallel procedure is improved, other ways of tackling the problem
could be investigated. To mention some possible future developments of this project, it could be
interesting to use the sherical norm instead of the euclidian distance: indeed, as the number of
dimensions increase, the distance between any two points in the dataset is converging. This is
of first concern when we are using the euclidian norm.
Another point is that, as Yumi Kondo puts it in [7], SK algorithm, and so PSK Algorithm by
extansion are affected by a even few outliers. Implementing a parallel robustification of the PSK
algorithm would be an interesting next step.

8 References

[1] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vassilvitskii, S. (2012). Scalable
k-means++. Proceedings of the VLDB Endowment, 5(7), 622-633.

[2] Witten, D. M., and Tibshirani, R. (2012). A framework for feature selection in clustering.
Journal of the American Statistical Association.

[3] Zhao, W., Ma, H., and He, Q. (2009). Parallel k-means clustering based on mapreduce. In
Cloud computing (pp. 674-679). Springer Berlin Heidelberg.

[4] Bekkerman, R., Bilenko, M., and Langford, J. (Eds.). (2011). Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press.

[5] Reed, J. W., Jiao, Y., Potok, T. E., Klump, B. A., Elmore, M. T., and Hurson, A. R. (2006,
December). TF-ICF: A new term weighting scheme for clustering dynamic data streams. In
Machine Learning and Applications, 2006. ICMLA’06. 5th International Conference on (pp.
258-263). IEEE.

[6] Liang, Y., Balcan, M. F., and Kanchanapally, V. (2013). Distributed pca and k-means
clustering. In The Big Learning Workshop at NIPS (Vol. 2013).

[7] Kondo, Y. (2011). Robustification of the sparse K-means clustering algorithm (Doctoral
dissertation, The University Of British Columbia (Vancouver).

[8] Boyd, S., and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

13

	Introduction and related work
	K-Means as a maximisation problem
	Some measures to set the problem
	The additivity of features's dissimilarities
	Depth and Work for SK-Means algorithm

	K-Means with a K-Means parallel initialization
	Deriving K-Means||
	Depth and work for K-Means||
	The K-Means algorithm with parallel initialization
	Depth and work for K-Means with parallel initialization

	The Parallel Sparse K-means algorithm
	PSK algorithm on a cluster
	Running the algorithm on the 20 Newsgroups Data Set
	Description of the Data Set
	Cleaning the Data Set
	The TF-IDF model
	Running Parallel Sparse K-Means

	Conclusion
	References

