CONVEX HULL -

PARALLEL AND

DISTRIBUTED ALGORITHMS

Jayanth Ramesh, Suhas Suresha
{jayanth7, suhas17} @stanford.edu

Abstract—In this project, we examine two different algorithms
for finding the convex hull. We analyze their performance in
the sequential world and discuss about how well they can be
parallelized and how well they scale in the distributed scenario.

I. INTRODUCTION

ONVEX hull of a set of points S is the smallest convex

set that contains S. A convex hull is also known as
convex envelope. It is a very interesting problem that has
applications in a wide variety of fields ranging from image
processing to game theory [4]. This wide ranging real world
application motivated us to study the algorithms for computing
convex hulls of a set of planar points and understand their
performance.

In this project, we consider two popular algorithms for com-
puting convex hull of a planar set of points. The first algorithm
is The Ultimate Planar Convex Hull Algorithm, which was
proposed by David G. Kirkpatrick and Raimund Seidel [2]
[1]. The second algorithm is the Quick Hull algorithm [3]
which was discovered independently in 1977 by W. Eddy and
in 1978 by A. Bykat [5]. We discuss the amenability of these
algorithms to the parallel and distributed scenario. We consider
the PRAM model for the parallel scenario.

The rest of the paper is structured as follows. We first
discuss the sequential version of The Ultimate Planar Convex
hull algorithm in detail, proving correctness and analyzing its
complexity, followed by a discussion about the performance
of the algorithm in the parallel and distributed world. We then
present the implementation of QuickHull algorithm, examining
its performance in the sequential, parallel and distributed
scenarios.

II. ULTIMATE PLANAR CONVEX HULL ALGORITHM

In this section, we discuss the sequential and parallel
implementation of the Ultimate Planar Convex Hull Algorithm
in detail. We also prove correctness and analyze the algorithm
complexity for both sequential and parallel versions of the
algorithm.

Ultimate Planar Convex Hull Algorithm employs a divide
and conquer approach. It computes the upper convex hull and
lower convex hull separately and concatenates them to find
the Convex Hull. The overview of the algorithm is given in
Planar-Hull(S).

Since an algorithm for constructing the upper convex hull
can be easily modified to obtain the lower convex hull, we only

Algorithm 1 Planar-Hull(.S)
1: #S is a dictionary mapping node id to (z,y) co-ordinates
2: return Upper-Hull(S) + Lower-Hull(S)

discuss the Upper-Hull algorithm here. The Upper-Hull(S),
given below, returns the sequence of vertices on the upper
convex hull. First, the algorithm finds a vertical line that
divides the given point set S into two approximately equal
parts. It then determines the edge of the Upper Hull crossing
this vertical line, called as the “bridge”. It then eliminates
the points that lie underneath the bridge, and then applies the
algorithm recursively to the two sets of remaining points on
the left and right hand side of the vertical line to find the upper
convex hull.

Algorithm 2 Upper-Hull(:S)

1: #S is a dictionary mapping node id to (z,y) co-ordinates

2: Initialization: Determine p,,;, and pe: Where
x(pmin) < x(pl) < x(pmax)- If iC(pZ) = x(pmin)’
then y(pmzn) > y(pz) If x(pz) = x(pmaa:>s then
Y(Prmaz) = y(pi)-
if prin = Pmaa then

print p,,;, and stop

end if
Let T = {pminvpma:zz} U{p € S|x(pmzn) < {L‘(pl) <

ZT (pma:v) }
7: CONNECT(p'rnin’pmava)

AN A

The most complex part of this algorithm is to find the
bridge crossing the vertical line. The function BRIDGE takes
as parameters a set of points and a real number a representing
the vertical line L = {(z,y)|z = a}. It returns as output
a pair (p;,p;), where p; and p; are the left and right bridge
point respectively. The algorithm uses the properties of convex
hull to recursively eliminate points that are not bridge points.

In the following subsections, we prove the correctness of
the Planar Hull algorithm and discuss the complexity for both
sequential and parallel implementation.

A. Correctness of the Algorithm

It is obvious that the Planar-Hull algorithm correctly returns
the convex hull of the given set of points. Now, we will prove
the correctness of the Upper-Hull algorithm assuming that the
BRIDGE method gives the desired output. We will then prove
the correctness of the BRIDGE method.

Algorithm 3 CONNECT(k, m, S)
1: #S is a dictionary mapping node id to (z,y) co-ordinates
2: Find real number « such that z(p;) < a for [|S|/2] points
in S and z(p;) > a for [|S|/2] points in S.
3 (pi,p;) = BRIDGE(S, a)
4 Let Siept = {1} Ulp € Sla(p) < a(po)}
5 Let Syigni — (03} Ulp € Sl(p) > (py)}
6: if p;, = pi then
7
8
9

print p;

: else

: CONNECT(K,p;,Sicrt)
10: end if
11: if p; = p,, then
12: print p;
13: else
14: CONNECTG,pm,STight)
15: end if

If the upper hull of the set of points S consists of only
one vertex, i.e, if all of S lies on one vertical line, then
the algorithm Upper-Hull is trivially correct and reports that
vertex. Otherwise, it calls the method CONNECT which finds
the bridge (p;,p;), which is an edge on the upper convex hull.
If p; turns out to be the leftmost vertex of the upper hull, it will
be printed. Otherwise, the recursive call CONNECT will cause
the sequence of vertices from p,,;, to p; on the upper hull to
be printed. Similarly, if p; turns out to be the rightmost vertex
of the upper hull, it will be printed. Otherwise, the recursive
call CONNECT will cause the sequence of vertices from p;
t0 Pmaz ON the upper hull to be printed.

Now in order to prove the correctness of the BRIDGE
method, we need to state a few lemmas. First we define a
supporting line of S to be a non-vertical straight line which
contains at least one point of S but has no points of S above
it. It is obvious that the bridge must be contained in some
supporting line. Let’s call that particular line as b and let s,
be the slope of b. In the BRIDGE method, we pair up the
points of S into [|S]/2] couples. The following lemmas show
how forming pairs of points can help us eliminate candidates
as bridge points.

Lemma 2.1: Let p, q be a pair of points of S. If z(p) = z(q)
and y(p) > y(q), then ¢ cannot be a bridge point.
Proof: Since the bridge is an edge of the upper convex
hull, ¢ cannot be a bridge point as it cannot be a part of the
upper convex hull. [|

Lemma 2.2: Let p,q be a pair of points of S with z(p) <
x(q), and let s,, be the slope of the straight line h through p
and q.

(1) If spq > sp then p cannot be a bridge point.

(2) If spq < sp then ¢ cannot be a bridge point.

Proof: Assume that s,, > s; is true and p is a bridge
point. Since s,, > sp and z(p) < z(q), q will lie above
the bridge line b which would contradict the fact the b is a
supporting line of S. Therefore p cannot be a bridge point. A
similar proof follows for case (2) as well. [|

Algorithm 4 BRIDGE(S, a)

1: #S is a dictionary mapping node id to (z,y) co-ordinates

24:
25:
26:
27:

28:

29:

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
: end if
49:

A

CANDIDATES =)
if |S| = 2 then
return ((p;, p;)), where (p;) < (p;)
end if
Choose ||S]/2] disjoint sets of size 2 from S. If a point
of S remains, add it to CANDIDATES.
Arrange each subset to be an ordered pair ((p;,p;)) such
that z(p;) < z(p;). Name this set of ordered pairs as
PAIRS.
for all (p;,p;) in PAIRS do
if x(p;) = x(p;) then
Delete (p;,p;) from PAIRS
if y(p;) > y(p;) then
Insert p; into CANDIDATES

else
Insert p; into CANDIDATES
end if
else
Let k(pi, pj) = (y(pi) — y(pj))/(x(p:) — z(ps))
end if
: end for

if PAIRS = () then
return BRIDGE(CANDIDATES, a)

. end if
: Determine K, the median of {k(p;,p;)|(pi.pj) €

PAIRS}
Let EQUAL = {(ps,p;) € PAIRS|k(p;,p;) = K}
Let LARGE = {(pi,pj) € PAIRS‘k(pi,pj) > K}
Let M AX be the set of points p; € S such that y(p;) —
K x x(p;) is maximum.
Let pi be the point in M AX with with minimum x-
coordinate
Let p,, be the point in M AX with with maximum Xx-
coordinate
if z(pr) <a & z(pp) > a then
return ((px, Pm))
end if
if 2(py,) < a then
for all (p;,p;) € LARGE|JEQUAL do
Insert p; into CANDIDATES
end for
for all (p;,p;) € SMALL do
Insert p; and p; into CANDIDATES
end for
end if
if z(pr) > a then
for all (p;,p;) € SMALL|JEQUAL do
Insert p; into CANDIDATES
end for
for all (p;,p;) € LARGE do
Insert p; and p; into CANDIDATES
end for

return BRIDGE(CANDIDATES, a)

These two lemmas are really useful to eliminate at least
one point from every one of the ||S|/2] couples. However it
is hard to test the condition s,; > s; without knowing the
value of s;, the slope of bridge line b, which is what we want
to compute. The following lemma (has a trivial proof) suggests
a simple solution to get around this difficulty.

Lemma 2.3: Let h be a supporting line of .S with slope sy,.

(1) sp < Sp iff h only contains points of S that are strictly
to the right of the vertical line L.

(2) sp =Sy iff h only contains a point of S that is strictly
to the right of L and a point of S that is strictly to the
left of L. This implies that h is the bridge line b.

(3) sn > Sp iff h only contains points of S that are strictly
to the left of the vertical line L.

In the algorithm, we choose s, to be K, which is the median
of the slopes defined by the ||S|/2] pairs of points. Using
lemma 2.3, we check if our supporting line A is the bridge. If
not, we check if the points on the supporting line / lie on the
right hand side or left hand side of the vertical line. If they
lie on the right hand side, then for all pairs (p;,p;) having
slope less than or equal to K, p; cannot be a bridge point. If
they lie on the left hand side, then for all pairs (p;, p;) having
slope greater than or equal to K, p; cannot be a bridge point.
Hence the BRIDGE algorithm recursively gets rid of points
that it confirms as not being the candidate points to return the
bridge.

B. Complexity Analysis for Sequential Version

We first discuss the sequential complexity of the BRIDGE
method. Operations from steps 3 to 19 in the BRIDGE
algorithm, where the method creates ||S|/2] disjoint pairs of
points and calculates their slopes, is executed in O(n) time.
We can determine the median K in step 23 in O(n) time from
Blum’s algorithm. Steps 24 to 29 is executed inO(n) time.
BRIDGE either finds the bridge points in step 31 or discards
redundant points of S from steps 34 to 48 to recursively call
BRIDGE again. Now since K is the median of the slopes of
all the [|S|/2] disjoint pairs, there are ||S|/4| pairs having
slope greater than or equal to K and [|S|/4] pairs having
slope less than or equal to K. Depending on the side of
L that the supporting line has its points, the method either
executes steps 33 to 40 or steps 41 to 48. In either case, we
eliminate one point from at least ||S|/4] pairs. Hence we pass
at most (3/4) x|.S| points to the next recursive call. Hence the
recurrence relation is

f(n) = f(B38n/4) + O(n) €]

It can be easily seen that such a recursive function has
complexity O(n). Hence BRIDGE method has sequential time
complexity of O(n).

We now look at the sequential time complexity of Upper-
Hull method. Finding p,,;n and p.,q. in step 2 of Upper-
Hull method takes O(n) time. If upper hull consists of only
one vertex, the algorithm trivially stops at step 4, otherwise
it calls the CONNECT method. In the CONNECT method, it
takes O(n) time to determine a and the bridge points (p;, p;)

as we saw in the previous analysis. It then recursively calls
CONNECT twice, one for the points on the left and one
for points on the right. Since a is chosen such a way that
it divides the point set S into 2 equal parts, the recursive
calls of CONNECT will not have more than [|S]/2] points
as input. In each recursive call, CONNECT discovers at least
one unknown edge which is part of the upper convex hull.
Assume that there are h edges in the upper convex hull. Then
the recurrence relation is given by

fnh) =en+ max (f(5h)+F(Gh)) @)

hi+h.=h
With some analysis, we can see that such a recursive function
has time complexity O(nlogh). Hence Upper-Hull method
has sequential time complexity of O(nlogh).

Planar-Hull method involves concatenating the results from
Upper-Hull and Lower-Hull to obtain the convex hull, which
takes constant time. Since Lower-Hull is a simple modification
to the Upper-Hull algorithm, its time complexity is O(nlogh)
as well. Hence the Planar-Hull algorithm has a sequential time
complexity of O(nlogh).

C. Complexity Analysis for Parallel Version

In this section, we discuss the depth complexity of the
Planar-Hull algorithm. We first look at the BRIDGE method.
Operations from 3 to 29 in BRIDGE, which involves finding
the median, can be executed in O(log® 1) depth. As discussed
before, we pass at most (3/4) x| S| points to the next recursive
call. Hence the recursive relation is

f(n) = f(3n/4) + O(log” n) 3)

It can be easily seen that such a recursive function has
complexity O(log®n). Hence BRIDGE method has depth
complexity of O(log®n).

We now look at the depth complexity of Upper-Hull method.
Finding p,in and py,q, in step 2 of Upper-Hull method takes
O(logn) depth. In the CONNECT method, it takes O(log® n)
time to determine a and O(log®n) to determine the bridge
points (p;,pj) as we saw in the previous analysis. The 2
recursive calls of CONNECT can be run in parallel. Hence
the recurrence relation is given by

(1G5 FGon)) @

h) = clog®
f(n,h) =clog°n + max 5 5

hi+hy=h
With some analysis, we can see that such a recursive function
has worst-case time complexity (’)(log4 n). Hence Upper-Hull
method has depth complexity of O(log n).

Planar-Hull method involves concatenating the results from
Upper-Hull and Lower-Hull to obtain the convex hull, which
takes constant time. Since Lower-Hull is a simple modification
to the Upper-Hull algorithm, its depth complexity is O (log® n)
as well. Hence the Planar-Hull algorithm has a depth complex-
ity of O(log" n).

Using Brent’s theorem, we can bound the time taken when
p processors are available as W <7, < W +

O(log* n).

D. Planar Convex Hull - Distributed

Being a divide and conquer algorithm, Planar-Hull is not
amenable to distributed scenario. In general, divide and con-
quer algorithms are not suitable for distributed scenario due
to very high communication costs. The Planar Convex Hull
algorithm involves a call to a recursive function CONNECT,
which itself invokes BRIDGE, another recursive function. This
makes The Ultimate Planar Convex Hull a very recursive algo-
rithm, which would involve a lot of communication between
the machines, making its use in practice inviable.

ITI. QUICKHULL ALGORITHM

This algorithm is in principle is similar to the QuickSort
algorithm. In each iteration, the algorithm picks the points
that would belong to the convex hull (To give its analogy to
QuickSort, in each call to QuickSort, the correct position of
the pivot is determined) and eliminates those points that do
not belong to the convex hull. This is repeated recursively
(and then the array elements to the left and right of pivot
are recursively sorted) till there are no more points to be
considered. The algorithm is recursive in nature. The pseudo-
code of the algorithm is given below.

Algorithm 5 QuickHull(S)
1: # S is a dictionary mapping node id to (x,y) co-ordinates

2: # Result is a global list containing the points in the convex
hull

3: Compute i, and ,,4,. If multiple points have the same
Tmin O Tmaz, Pick any one.

4: Let ppin and Pp,q. correspond to points with x-coordinate
as Tyin and .4, respectively.

5: Add all points with x-coordinate as T, OF Zyae tO
Results and remove these points from S

6: QuickHull_helper(S, pmin> Pmaz)

Below, we describe the algorithm used to check if a point
lies in a triangle

A. Correctness of the Algorithm

One of the key observations is the following lemma.

Lemma 3.1: Any point which is the farthest away from a
line (on either side) joining any two points belonging to the
convex hull will also belong to the convex hull.

Proof: This can be proved by contradiction. Consider the
case, where the farthest point (call it p) from the line is not
included in the convex hull. Let the axes be re-oriented such
that the x-axis is aligned along the line joining the two points
in the convex hull. Then, the point farthest away from this
line will have the maximum or minimum y-coordinate among
all the set of points. Now, since all the other points have the
absolute value of their y-coordinate less than the absolute value
of y-coordinate of p, no convex combination of points already
in the hull can result in p. But this contradicts the definition
of a convex hull. Hence, p also belongs to the convex hull. ®

From the above observation, we can infer that the points
which are farthest away from the line (on either side) joining

Algorithm 6 QuickHull_helper(S, p1, p2)

1: Let p, and p, be the points which are farthest from the
line joining P,,in and pp,qz, on either side of the line
respectively.

2: if p, exists then

3: Add p,, to Results and remove it from S
Remove all points that lie in a triangle formed by p;,

D25 Pu

: end if

. if pp exists then
Add p, to Results and remove it from S
Remove all points that lie inside the triangle formed

by p1, p2, b

9: end if

10: if S is empty then

11: return

12: end if

13: if p,, exists then

14: QuickHull_helper(S, p,, p1)

15: QuickHull_helper(S, p,, p2)

16: end if

17: if p, exists then

18: QuickHull_helper(S, py, p1)

19: QuickHull_helper(S, py, p2)

20: end if

»

Algorithm 7 CheckIfInTriangle(S, p1, p2, p)

1: vo =p

22V =p1—p

3 vg=p2 —p

4: for Points in S do

5: v - the current point under consideration

6: a = (det(v,v2) — det(v0,v2))/(det(v1,v2))
7: b= —(det(v,vl) — det(v0,v1))/(det(vl,v2))
8: if

9: thenif (a > Oandb > Oanda + b < 1):
10: Remove v from S

11: end if

12: end for

13: for points in S do

14: end for

the points whose x-coordinates are the minimum and maxi-
mum respectively will belong to the convex hull. Also, the
points with the minimum and maximum x-coordinate will
belong to the convex hull.

Any point which lies inside the triangle formed by the
points at the extreme (min and max x-coordinate) and the
point farthest away from the line joining these two will not
belong to the convex hull, because if that happens, then the
points lying on or outside the triangle would not lie inside the
convex hull.

Hence, at every step, the algorithm identifies at least one
point belonging to the convex hull if it exists, and eliminates
at least one point belonging to the convex hull if there is any
such point. Therefore, when all the points are considered, the

algorithm correctly identifies the set of points that belong to
the convex hull.

B. Complexity Analysis for Sequential Version

Let h be the number of edges in the convex hull, which is
also the number of vertices in the convex hull. Let n be the
total number of points under consideration.

The steps from 3 to 6 in QuickHull(S) can be performed in
linear time. The steps from 1 to 10 in QuickHull_helper()
can be done in linear time. Now, since at least one point
belonging to the convex hull is identified in each call to
QuickHull_helper(), at most h calls to the functions would
be made.

Hence, on the whole, the algorithm has a time complexity
of O(nh)

C. Complexity Analysis for Parallel Version

The QuickHull algorithm is inherently sequential, as each
of the recursive calls made are not independent of one another
as S gets updated each time.

The analysis of time complexity follows a similar recipe as
the sequential one, except for the fact that the operations from
3 to 6 in QuickHull(S) and 1 to 10 in QuickHull_helper() can
be done in O(logn) time. Again, at most h calls need to be
made to this helper function, making the overall complexity
to be O(hlogn), assuming infinite processors are available.

Using Brent’s theorem, we can bound the time taken when p
processors are available as % <T,< % + O(hlogn)

IV. DISTRIBUTED QUICKHULL

The QuickHull algorithm is a good candidate when con-
sidering the distributed version, because the communication
costs involved are greatly reduced. Let us assume there are
m machines and that the data is distributed evenly, so each
machine stores n/m of the points.

Algorithm 8 Distributed QuickHull (S)

1: All the individual machines compute the minimum and
maximum x-coordinate among their dataset and send the
result to the driver machine, which then computes the
global minimum and maximum and broadcasts it to all
the machines and adds it to the convex hull.

2: Once each machine has the information about these two
points, they can compute the point farthest from the
line joining these two points as described previously and
send their respective results to the driver, which can then
broadcast the global point that is the farthest from the line
to all the machines and adds it to the convex hull.

3: Once each machine has all the vertices of the triangle,
they can remove the points among their dataset that lie
inside the triangle.

4: The recursive procedure can then be repeated in a similar
fashion as described above.

A. Communication Cost

We observe that in the above algorithm, communication
occurs only when we need to compute global maximums or
minimums.

In each call to the QuickHull_helper(S, p1, p2), two compu-
tations of global maximums occur, which involves computing
the point farthest from line joining p; and ps on either side of
it. Therefore, each call to the helper function involves O(m)
communications. This implies that the total communication
cost is O(mh).

One important thing to observe here is that the communica-
tion cost scales only with the number of edges in the convex
hull, and not with the number of points under consideration,
which is a big win, because the number of edges in a convex
hull are much less than the total number of points in general.

B. Time Complexity

1) Communication Time: Let L be the latency and B be the
bandwidth. The overall communication cost for each round of
computation of the global maximums of minimums would be
O(L + '5). Since there would be h such rounds of all-reduce
communication, the total communication time is O(hL + ’%”)

2) Work and Depth: The number of nodes stored in each
machine is %, and each call to the QuickHull_helper() func-
tion involves O(number of points) work before making the
recursive calls. Since all the machines, can do the work in
parallel, we have the work done by each machine in each call
to the helper function as O(;). Since, there would be at most
h such rounds of communication, the total work is given by
O(Zh).

The analysis of depth follows a similar recipe, as there isn’t
much scope for parallelization for the QuickHull algorithm.
Each call to QuickHull_helper() would result in O(log(;%))
work before the recursive calls are made and hence the total
depth is O(log(~)h).

Using Brent’s theorem, we can then bound the time it takes

with p processors in each of the m machines as % <
T, < 2@l 4 O(log(2)h)

V. CONCLUSION

We considered two algorithms for finding the convex hull
and analyzed their time complexity for the sequential version
of the algorithm. While the Ultimate Planar Convex Hull
algorithm is a good candidate for a parallel algorithm, as there
is a lot of scope for parallelization, it isn’t amenable to the
distributed scenario. The QuickHull algorithm on the other
hand, while not a very good sequential algorithm (in terms
of time complexity) or a parallelizable algorithm, is a good
candidate for the distributed scenario, as the communication
cost scale only with the number of edges in the convex hull
and not with the number of points under consideration.

Algorithm Sequential Parallel Distributed Comm. Cost
Ultimate Planar | O(nlogh) | O(log®n) Inviable
QuickHull O(nh) O(hlogn) O(mh)

VI. FUTURE WORK

We showed two algorithms for finding convex hull, one
which is good in the parallel scenario and another algorithm
that is good in the distributed scenario. Future work could be
aimed at coming up with an algorithm that utilizes the best of
both these algorithms, which would then be a good candidate
for both the parallel and distributed scenarios, along with good
sequential time complexity.

REFERENCES

[1] AKI, S. G. ”Optimal parallel algorithms for computing convex hulls and
for sorting.” Computing 33.1 (1984): 1-11.

[2] Kirkpatrick, David G., and Raimund Seidel. ”The ultimate planar convex
hull algorithm?.” SIAM journal on computing 15.1 (1986): 287-299.

[3] https://en.wikipedia.org/wiki/Quickhull.

[4] https://en.wikipedia.org/wiki/Convex_hull

[5] https://en.wikipedia.org/wiki/Convex_hull_algorithms

