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1 Introduction

Nonnegative matrix factorization (NMF) [9] approximates a data matrix A € R"*™ as a rank-
r product of two non-negative factor matrices W € R"*" and H € R"*", typically with r <
min(n,m). That is, NMF involves approximately solving the optimization problem:

minimize ||A - WH|%
W 1
subjectto W >0, H >0

This problem is nonconvex, and is NP-hard in the worst case [[19]. However, approximate solutions
to this problem are sought in practice and are successful for a variety of applications (see [9] for
a review). A contributing factor to this empirical success is the fact that problem is biconvex,
meaning that fixing either W or H and optimizing over the other variable is a convex problem.
Specifically, each subproblem amounts to a non-negative least squares solve, which can be solved
relatively efficiently using active-set methods (e.g. [15]). This suggests the Alternating Nonnegative
Least-Squares (ANLS) procedure, which performs alternating minimizations on W and H until
convergence [procedure 1]. This is guaranteed to converge to a stationary point of problem (), and
is the most popular approach for fitting NMF in practice [14].

Recent work has described NMF algorithms in a distributed setting. Implementations for ANLS
have been described in Hadoop [16], MPI [13], and Spark [[17,21]. ANLS is not trivially paralleliz-
able in a distributed setting since the non-negative least squares subproblems in (I)) decompose over
different sets of variables. Minimizing with respect to W (resp. H) can be done in parallel across
rows (resp. columns) of the data matrix A, but not across the columns (resp. rows) of A. Thus, each
iteration of ANLS involves significant communication costs. Lower bounds for these costs, as well
as an algorithm that saturates these bounds, are described in [13]]. Other methods for fitting NMF
include stochastic gradient-based methods, which are described in a distributed setting by [20, 22]].

Despite the popularity of ANLS, this algorithm can get stuck in local minima. Finding a good ini-
tialization or “warm start” for NMF is therefore of substantial interest and practical importance. This
is particularly true in the distributed setting, since each iteration of ANLS has high communication
overheads [13]. In this manuscript, I review several initialization and optimization techniques for
NMEF, and analyze their complexity in an idealized PRAM and a distributed computing setting. In
particular, I focus on the following:

e Successive Projection Algorithm (SPA) [} [10]
e Nonnegative Double Singular Value Decomposition (NNDSVD) [4]

I conclude that these procedures require relatively little communication and computational overhead,
and are relatively easy to extend to distributed architectures.



Procedure 1 Alternating Non-negative Least-Squares (ANLS)

Input: A € R™*" holding non-negative data, and desired rank r.
Output: Nonnegative factor matrices W € R™*" and H € R"™*"
1: Initialize W and H randomly
2: while convergence criteria not satisfied do
3: %% eargminWZOHAfVAVHH%
4 H < argming ||[A - WH|?

5: end while

1.1 Background on Parallel and Distributed Analysis

In most cases, I make the assumption that the dataset can be distributed in 1-dimensional blocks
across machines. That is, A is either a “tall-skinny” or a “short-fat” matrix so that either m or n
is small enough to be fit on a single machine. These two cases are equivalent from an algorithmic
view, since it is trivial to modify a procedure to take A7 as input rather than A.

I analyze algorithms in two theoretical settings. First, in an idealized parallel random access ma-
chine (PRAM) in which p processors have access to a shared memory block, with no communication
overhead. For an introduction and review of this setting see [3]. Briefly, the complexity of an al-
gorithm in the PRAM setting can be characterized by the work, the total number of operations
performed, and the depth (sometimes called the span), the longest sequential chain of dependent
computations. Work roughly equates to the algorithm runtime when executed sequentially on a
single processor, 717, while depth represents runtime with an unlimited number of processors, T5..
Work and depth provide upper and lower bounds on the runtime with p processors, 1},, by Brent’s

theorem [5]]:
T T
LT, <2+ T
p p

A shortcoming of Brent’s theorem and the PRAM setting is that they do not account for commu-
nication costs between processors, which are in practice an important bottleneck on large datasets.
Thus, I also study each algorithm in a distributed computation setting involving p machines with
private memory banks. In this case, the inputs and outputs of the algorithm, as well as intermediate
data structures may be distributed over multiple machines. There are many possible characteristics
to report in the distributed setting. I mostly emphasize (a) the number of rounds of communication,
and (b) the largest message size. See [6] for a more thorough review of communication patterns and
costs; the algorithms I analyze only use basic communication collectives (reduce, broadcast, and
all-gather).

2 Successive Projections Algorithm (SPA)

2.1 Background

Definition 2.1. Separability. We call A separable if it admits a decomposition A = W H in which
the columns of H can be permuted to form an r X r block that is diagonal. That is, for each row
in H there exists a column of H that contains a nonzero entry in that row, but contains zeros for all
other rows.

Claim. Let As € R™*" denote a separable dataset. Then, separability condition implies that the
columns of W appear as columns in A (after scaling).

Proof. Let As and H denote the (separable) data and factor matrix H after (a) scaling each column

to be unit length, and (b) permuting the columns such that the first  rows of H contain an identity
matrix. Then the first  columns of A contain W:

AS:WFI:W[IT




O

SPA and similar techniques are motivated by the observation that, by constraining the columns of I
to be fixed length, then the vertices of the convex hull of A form W (assuming separability). This
leads to the following theorem, which is proved in [2]].

Theorem 2.1. (Arora et al., [2]) If a dataset is separable, then there exists a polynomial time algo-
rithm that provably solves the NMF optimization problem.

Although most real-world datasets do not strictly satisfy the separability condition, geometric al-
gorithms based on this assumption are effective in many settings [9]. For example, in document
classification [2], NMF can be used to assign r latent topics to m documents for a dataset contain-
ing word counts for a dictionary of n words in each document. In this case, certain words (called
“anchor words”) may only occur in particular topics. For example, “umpire” may only occur in the
“sports” section of a corpus of newspaper articles. If there exists at least one anchor word for each
topic, then this implies the separability condition.

In practice, many datasets are not perfectly separable. Thus, it can be effective to use the result
of SPA as a warm start to ANLS or other descent-based algorithms. Theoretical results on the
robustness of SPA to noise are derived in [10], and analysis of similar techniques are given in [§]].
SPA was originally introduced by [[1]].

2.2 Sequential SPA algorithm

As briefly mentioned in the previous section, SPA treats the columns of A as points in R™ and finds
the convex hull of these points; the vertices of the convex hull correspond to columns in W. After
W is found, H can be found with a single non-negative least-squares solve.

Procedure 2 Successive Projection Algorithm (SPA)

Input: A € R™*" holding non-negative data, and desired rank r.
Output: Nonnegative factor matrices W € R™*" and H € R"™*"
I: R=copy(A), J={}
: for £ = 1 : r in parallel do
q = arg max;|| ;5|3

R..RTR
R=R-— L2t
[R:ql13

2

3

4

55 J=Ju{d}
6: end parallel for

7. W =A(J)

8: H =NNLS(W, A)

2.3 PRAM model
Claim. SPA takes O(rmn) work and O(r log m + rlogn) depth to find W (lines 1-7).

Proof. The algorithm takes r sequential iterations, each of which takes O(mn) work and O(log m+
logn) depth as detailed below. Lines 1 and 7 do not change this complexity (line 1 is completed
after O(mn) copy operations, and both are embarrassingly parallel).

Line 3. Bach || R.;||3 for j € 1, ...,n can be computed in parallel. Each of these norms takes
involves summing /m numbers, which involves O(m) work and O (log m) depth (since sum-
mation is a binary associative operation). Thus, the work is O(mn) and depth is O(logn).

Line 4. First compute R”. R and then compute R.,(R%, R). Again, the work is O(mn) and
depth is O(log n).



— Computing R?;R is a simply matrix-vector multiply which can be done in O(mn)
work and O (log m) depth. Briefly, n dot products are computed in parallel, each with
work O(m) and depth O(log m).

— Computing R;q(R?;R) is simply an outer product of two vectors, which can be done
in O(mn) work and O(1) depth. For two vectors u € R and v € R", each entry in
the result can be computed in parallel (uv?);; = u;v;.

Lines 5. This is a O(1) work and depth operation.

O

Remark. On a sequential machine the non-negative least squares problem on line 8 can be solved
up to a tolerance parameter € with O(log %) iterations of a first-order (i.e. gradient-based) convex
solver. Calculating the gradient is linear in the number of parameters, O(rn), leading to a total of
O(rnlog %) work. A variety of active-set methods are more typically used in practice, and a more
thorough analysis is outside of the scope of this paper. Note that line 8 of [procedure [2]] will have
the same cost as half an iteration of ANLS.

2.4 Distributed Setting

Since the SPA iterations involve repeated operations on the columns of A, it is natural to distribute
the columns of A across machines so that the majority of computation can be done locally. We
restrict ourselves to the case where each column can be fit on a single machine (i.e. A is short and
fat).

A:{A(l)‘A@)‘...‘A(b)} 2

In this regime W € R"*" is a relatively small matrix that can be stored on each machine (typically
r < m). We distribute H similar to A, so that machine ¢ holds the relevant partitions of H to
approximate A, given W:

{Au) | | 4® } %W[ HO | ... ‘H@)} —~ A® ~WwH®

This suggests [procedure [3]] for SPA in a distributed setting, which I analyze in terms of storage
space, communication and computation cost.

Memory Allocation. Distributed SPA allocates O (mn) new memory, due to the initialization of R in
step 2. (Allocations for W, and H, are O(mr) and O(nr) and temporary allocations for R., in each
iteration are O(m)). This is perhaps the biggest shortcoming of translating SPA into a distributed
setting. For very large datasets creating a copy may be prohibitive.

Communication Costs. Distributed SPA requires O(r log p) rounds of communication with a maxi-
mum message size O(m). Each iteration involves a fixed number of map (all-to-one) and broadcast
(one-to-all) communications. The largest message size is length m (broadcast R., in step 9). There
are exactly r sequential iterations, so the total number of communication rounds is O(r log p). Step
13 requires an all-to-all communication, but this does not alter the order of the result. Consider each
column of W as a length m message. Then there are » messages of length m; a naive algorithm that
sequentially broadcasts each message takes O(r log p) rounds of communication.

Reduce-Key Complexity. The only reduce step occurs on line 6, which takes the maximum of p
scalars. This is O(p) if done sequentially.

Other Computational Costs. The PRAM analysis outlined in the previous section is directly appli-
cable. The computations done on each machine require O(**) work and O(rlogm + rlog %)
depth.

3 NNDSVD

3.1 Background

It is well-known that the best unconstrained rank-r approximation of a matrix in terms of the Frobe-
nius norm is given by the truncated singular value decomposition (SVD). This represents a rare case



Procedure 3 Distributed SPA
Input: A € R™*™ holding non-negative data, distributed across p machines with each machine

holding n/p columns.
Output: Each machine holds the full matrix W € R™*". The second factor matrix H € R"*"™ is

distributed as A across machines.

1. JO = {} > Each machine, indexed by ¢, stores the set of selected indices.
2: R = copy(A®)) > Each machine copies the local part of A in parallel.
3: fork=1:rdo
4 ¢ = arg max; HR:(j) I
5: map: Each machine emits (1 — (¢9), HR;(? )]
6: reduce: Maximum on HR:(;?) , finding ¢ the column of max norm
7: broadcast: q to all machines
8: broadcast: Machine holding column index ¢ broadcasts R.,.
o0 RO — RO _ RHR’fin“ JO = 70U g}
10: end for
11: WO = AO(7®)
12: all-gather: W «— W) > W needs to be consolidated on each machine for NNLS.

13: H®) = NNLS(W, A®)

in which there is an efficient method to find a provably optimal solution to a non-convex problem.
One might hope that spectral methods for computing the SVD could be leveraged to find fast and
effective algorithms for NMF.

There are unfortunately many limitations to spectral algorithms for NMF [14]. However, they can
nevertheless serve as useful initializations (‘“warm starts”) for ANLS and other descent-based meth-
ods. A useful theorem in this respect is that the leading pair of singular vectors of a non-negative
matrix are also non-negative. This is a simple extension of the Perron-Frobenius theorem to non-
square matrices.

Theorem 3.1. Denote the singular value of a decomposition of a non-negative matrix A of rank-r
as A=UXVT =3, _ s,u,v!. Thenu; and v; are non-negative.

Corollary. When = 1, a solution to the NMF problem (1) is given by W = u; and H = v7.

It is well-known that the full SVD can be exactly computed by successive matrix deflation: that
is, repeatedly computing and then subtracting off the leading singular vectors. Unfortunately, this
approach does not generalize to NMF when 7 > 2 since A — u;v? may contain negative entries.
Nevertheless, approximate solutions to NMF based on the SVD can be computed and can serve as
effective initializations in practice. Boutsidis [4] proposed [procedure[d]], which they call nonnega-

tive double singular value decomposition (NNDSVD)

3.2 PRAM

Claim. In a PRAM setting, the work and depth required to compute a rank-r NNDSVD matches
that of computing a truncated SVD. Methods for parallel truncated SVD are an active research area,

but are currently believed to require O (mnr) work and O(log® n) depth [18].

"Note that [4]] use a sequential for loop; since this for loop is trivially parallelizable I indicate this in [pro-
cedureE]] with a parallel for loop.



Procedure 4 Parallel Nonnegative Double Singular Value Decomposition (NNDSVD)

Input: A € R™*"™ holding non-negative data, and the desired rank r.
Output: Approximate non-negative factor matrices W € R™*" and H € R"*".
1: Compute the leading 7 singular vectors, U, s,V = psvd(A4,r)
>UeR™", seR",and V € R"*". By theorem U.; and V.; are nonnegative.
2: W+ /51Uy
30 Hiy <+ /51-Va
4: for k = 2 : r in parallel do

S up = pos(U:k')7 u_ = neg(U:k:)

6: v =pos(Vg), vo =neg(Vy)

7 it fugflval> Ju_|jllv_| then

8: w=uy/fugll, v=vi/val, o= lucflvs]
9: else

10: w=u/lu_, v=v_/Iv_], o=llu_[llv_|
11: end if

12: Wy <+ oy/s;-u

13: Hy. < o0.\/sp -V

14: end parallel for

Proof. Lines 2-14 require O(rm + rn) work and depth of O(log m +log n) as detailed below. Note
that the iterations of the for loop can be executed in parallel.

Lines 2-3, 8, 10, 12-13. These are simple scalar multiplications of vectors. They require
either O(m) or O(n) work (for columns of U or V, respectively) and O(1) depth.

Lines 5-6. These are also embarrassingly parallel operations, resulting in O(m) or O(n)
work and O(1) depth. Each element of Uy and V;;, is found to be positive or negative in
parallel, and is input to index ¢ of one of uy, uy, v, or vi.

Line 7. Computing the Euclidean norms of u and u. requires O(m) work and O(log m)
depth. Likewise, these computations for v and v require O(n) work and O(logn)
depth.

O

3.3 Distributed Setting

It is easy to see that the SVD is the again the largest cost in terms of computation and communication
costs. For completeness, a full algorithm for NNDSVD using distributed framework is outlined in
appendix [A] The only additional communication costs for NNDSVD are allreduce commands to
compute uy, u_, v, and v_. These require O(log p) rounds of communication.

I analyze two methods for distributed SVD in appendices [B| and |Cl The first is based on the cal-
culation of the Gramian matrix, AT A, and is one of the current methods implemented in Spark’s
Mllib [21]. The second method is based on a randomized algorithm [12]; although this algorithm
is well-known I am unaware of any implementation or analysis of this algorithm in a distributed
setting. Both methods have similar communication costs, but the number of operations required by
the randomized method is linear in m and n, while the Gramian method is quadratic in one of these
dimensions.



4 Conclusions and Future Work

In a distributed setting, every iteration of ANLS requires at least O(*}*) operations and O(log p)

rounds of communication [13]]. Because NMF is an NP-hard problem with few theoretical guaran-
tees, it may take many iterations to converge to a stationary point. This report shows how to extend
standard NMF initialization procedures to a distributed setting. These algorithms require similar
resources to just a single ANLS iteration, and have been empirically shown to drastically reduce
time to convergence. Indeed, under certain conditions, SPA and similar techniques provably recover
the optimal solution without the need to resort to alternating minimization [2} [10].

In practice, SPA and similar techniques can be sensitive to noise. Gillis and Vavasis [10] showed
that this sensitivity is scaled by the condition number of the data matrix k(A4) = o such that
ill-conditioned data is much more sensitive to noise. Recently, the same authors presented a pre-
conditioning algorithm, which addresses this shortcoming and renders the algorithm much more
robust to noise [11]. They suggest an active set method for solving a semi-definite program as an
optimal solution, but also suggest a heuristic procedure based the SVD to precondition the data. It
would thus be feasible and likely useful to combine SPA with some form of pre-conditioning in the
distributed setting.

For datasets that are not nearly separable, SPA and similar techniques may not provide useful ini-
tializations. Another downside is that SPA requires a copy of the data to be made, which can be
quite expensive for very large datasets. Thus, I also studied a more generic procedure, NNDSVD
[4]]. T showed that the communication and computational costs of this algorithm are dominated by
computing the SVD. Using a common current algorithm for distributed SVD, this would require
O(m?n) or O(mn?) operations aggregated across machines, unlike SPA which requires O(mnr)
operations. However, I outline a randomized algorithm in appendix [C] which makes the total cost of
NNDSVD similar to SPA.

Overall, these results suggest that popular initialization procedures for NMF on a single machine are
scalable to large architectures.
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Appendix A Distributed NNDSVD

Procedure 5 Distributed NNDSVD
Input: U € R™*", s € R", V € R"*" holding the SVD of A. U and V are distributed as block

row matrices across p,, and p,, machines, respectively, i.e. UD e Rew X" and VO € Rww *"
are held on machine ¢. The singular values s are broadcast/held on all machines.

Output: Approximate non-negative factor matrices W € R™*" and H € R"*", distributed across
machines as U and V.

Wi e ya Ul HY s vy

2: for k = 2 : r on each machine ¢ do

3wl =pos(UY), u¥) =neq(Uy)

4 v =pos(})), v¥) = neg(v")

s: Compute [[uf) 12, VL%, [[a L)%, V112

6: end for

7: allreduce: |wir||= /S 002, [varl= /v
8: allreduce: ||u_i||= ZZIIU(QHQ, [v_kl= ZeHV(fI)CHZ

9: for k = 2 : r on each machine ¢ do

10: i il [varl> u_il[v—s then

V4 YA YA Y4
1 u) =u)/llugell, vi2 =vE/Ivarl, or = llusklllvar]

12: else

¢ YA YA YA
13: u) =u) /lluill, vi? =vE/Ivoill, or = usillv_s]
14: end if

15 W« opy/sEul”
16: H(]f) {— Ok+\/Sk -V](f)
17: end for

Appendix B Distributed Singular Value Decomposition by calculating
Gramian Matrix

Let A € R"™*" with n > m distributed as column-wise as in . One simple way to compute the
SVD (assuming 7 is not too large) is to first compute compute the SVD of AAT, since this provides
the left singular vectors of A:

A=UxvT = AAT = (uxvhwusvhT =Uus?u”
To solve for the right singular vectors:
vi=x"1U"4
This suggests [procedure [§]l, which I outline and briefly review below.

Memory Allocation. Distributed SVD requires O ( m? + %) new memory on any single machine.

nr
p

(distributed) allocation of V7 on line 6. Note that the allocation of U does not contribute since

mr < m2.

The m? term comes from the computation of A® AT on line 1; the term comes from the



Procedure 6 Distributed Truncated Singular Value Decomposition
Input: Matrix A and desired rank 7. A is distributed as in , so that machine ¢ holds sub-matrix

A € R™X %, where p is the number of machines.
Output: U € R™*", ¥ ¢ R™*", VT € R™*". VT is distributed like A across machines.
1: Each machine computes A AT
2: reduce: AAT =30 A AOT
3: Compute U, X2, UT = svd(AAT,r) locally
4: ¥ = sqrt(X?)
5: broadcast: ¥~'UT
6

- Each machine computes V(O = »-1y7T A()

Communication Costs. The only communication costs are the all-to-one communication on line
2 with message size n?, and the one-to-all communication on line 5 with message size nr. These
require O(logp) rounds of communication when a recursive doubling communication pattern is
used.

Computational Costs. Computing AA” on line 1 requires O(m?n) flops and dominates the order
of the computational complexity. All other computations involve 7 and from r < min(m, n). Com-
puting the SVD of AAT requires O(m?r) flops. Computing ¥ and ¥~ ! requires O(r) operations
since these are diagonal matrices. Likewise, X~'U7 is a simple scaling of each column of U7 so
takes O(myr) flops. Finally, line 6 requires O(rmn) flops in aggregate across machines.

Appendix C Randomized algorithm for distributed SVD

Procedure 7 Distributed Randomized SVD (based on [12])
Input: Desired rank 7 and data A € R™*" distributed as a block row matrix across p machines

so that machine ¢ holds A() € R% *™. All machines initialize their random number generator
with a common seed.
Output: Approximate factor matrices W € R™*" and H € R"*"™.
1: Each machine draws 2 € R™*" as a Gaussian random matrix
> € is equal on all machines.
2: Compute Y(©) = A(DQ
3: Compute distributed QR decomposition, Y ©) = QU R.
> (Q is orthonormal and distributed like Y [7]].
4: reduce: Compute B =3"7_ QT A®)
> B € R™™" is small and should fit on a single machine.
s: Locally compute SVD, B = USV7

6: broadcast: U
7. U=QWU

Communication costs. Communication occurs on lines 3, 4, and 6. A communication-optimal
algorithm for QR decomposition is given by [7] and involves O(log p) rounds of communication.
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The reduce and broadcast operation on lines 4 and 6 also require O(log p) communication rounds,
with O(rn) and O(r?) message sizes, respectively.
Computation costs. The computation on any machine is upper bounded by O( % + mTTQ +73 log p+

nr?+nrp) operations. Critically, this algorithm has linear complexity in m and n, unlike the method
covered in appendix B}

Line 2. O (%) operations on each machine.

mr?
p

Line 3. The algorithm for distributed QR decomposition provided by [[7]] requires O( +

r3log p) computations.

Line 4. Computing QYT A®) on each machine requires O (%) operations. The re-

duce complexity involves summing r X n matrices over machines, resulting in O (nrp)
operations.

Line 5. Calling a standard SVD algorithm here requires O(nr?) operations.

. 2 . .
Line 7. O(*~) operations on each machine.

11



	Introduction
	Background on Parallel and Distributed Analysis

	Successive Projections Algorithm (SPA)
	Background
	Sequential SPA algorithm
	PRAM model
	Distributed Setting

	NNDSVD
	Background
	PRAM
	Distributed Setting

	Conclusions and Future Work
	Appendix Distributed NNDSVD
	Appendix Distributed Singular Value Decomposition by calculating Gramian Matrix
	Appendix Randomized algorithm for distributed SVD

