

Large-Scale Matrix
Factorization: DSGD in Spark

June 01, 2016

Collaborative Filtering (CF)

- Most prominent approach to generate recommendations
- Idea: Use "wisdom of crowd" to recommend items
- Input: Implicit or explicit user ratings
- Algorithms: Baseline, Memory-based, Matrix Factorization, etc.

Matrix Factorization:

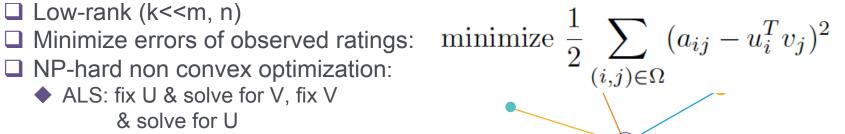
- Latent factor model
- Dimension Reduction
- Handles large datasets, sparsity
- Can be regularized
- PCA, SVD, NMF, TF, ALS, SGD, SSGD, DSGD, etc.

- Spark MLlib: ALS
- Gemulla paper: DSGD

MLIib Alternating Least Squares (ALS)

$$A \approx UV^T, \quad U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}$$

- □ Low-rank (k<<m, n)
- NP-hard non convex optimization:
 - ALS: fix U & solve for V, fix V & solve for U
 - Turns in convex least squares problem
- ☐ Communication Costs:
 - Two Copies for ratings: partitioned by users & partitioned by items
 - Block to block instead of all to all
- ☐ Fully Parallel: Models shared via join between workers



Stochastic Gradient Descent SGD

Algorithm 1 SGD for Matrix Factorization

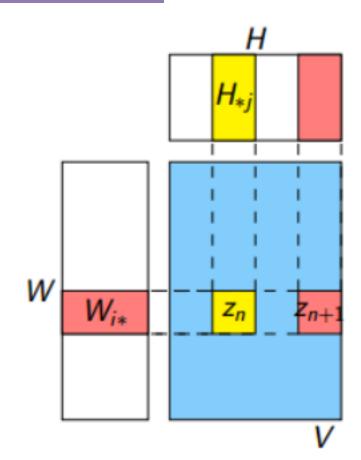
Require: A training set Z, initial values W_0 and H_0 while not converged do /* step */ Select a training point $(i, j) \in Z$ uniformly at random. $W'_{i*} \leftarrow W_{i*} - \epsilon_n N \frac{\partial}{\partial W_{i*}} l(V_{ij}, W_{i*}, H_{*j})$ $H_{*j} \leftarrow H_{*j} - \epsilon_n N \frac{\partial}{\partial H_{*i}} l(V_{ij}, W_{i*}, H_{*j})$ $W_{i*} \leftarrow W'_{i*}$ end while

Stochastic Gradient Descent SGD

□ SGD: iterative, steps dependent

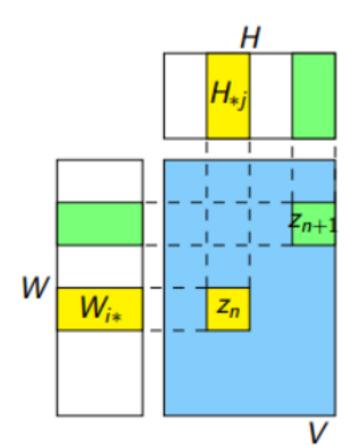
$$\theta_{n+1} = \theta_n - \epsilon_n \hat{L}'(\theta_n)$$

■ How to distribute?



Distributed Stochastic Gradient Descent DSGD

- Divide into interchangeable strata
- ☐ d independent map tasks:
 - ◆ Each takes a block: Z^b, W^b, H^b
 - ◆ Local SGD on each stratum
- Local losses sum
- Representation allows parallelism



Distributed SGD

```
Algorithm 2 DSGD for Matrix Factorization
```

```
Require: Z, W_0, H_0, cluster size d

W \leftarrow W_0 and H \leftarrow H_0

Block Z/W/H into d \times d/d \times 1/1 \times d blocks

while not converged do /* epoch */

Pick step size \epsilon

for s = 1, \dots, d do /* subepoch */

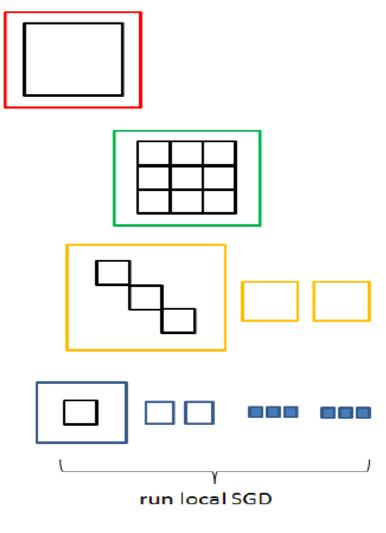
Pick d blocks \{Z^{1j_1}, \dots, Z^{nj_d}\} to form a stratum

for b = 1, \dots, d do /* in parallel */

Run SGD on the training points in Z^{0j_b} (step size = \epsilon)

end for
end while
```

until loss minimized



Results

- DSGD scales well with input matrix dimensions & number of available ratings
- Scales well with # of Cores until too many → data per mapper is too small
- d-monomial strata representation: reduced communication costs
- DSGD shuffles only strata and blocks (SGD shuffles all data)

Rank	Time per epoch (s)
50	120
100	125
200	135

Cores	Time per epoch
8	1x
16	0.52x
32	0.27x
64	0.24x

Notes

- ALS speedy convergence, works well in practice
- Spark: very helpful for implementing DSGD compared to a MapReduce
- · Operate on data in memory, no write to disk after every iteration
- DSGD can be enhanced further in Spark: smart data dependent blocking

