Map-Reduce Algorithms for
k-means Clustering

Max Bodoia

k-means via MapReduce

kMeansMapper(z,) :
compute d,; = ||z, — m;||3> for each i
set j = argmin; d;
emit (7, (zp,1))

kMeansReducer(i, [(zp, vp), (24, v4)]) :

output (i, (T, + x4, +9,))

Result: (?(Z By, |Cl|)) for each cluster C;

r,eC;

k-means via MapReduce

Full algorithm:
initialize means
while not converged:
results = data.map(kMeansMapper) .reduce (kMeansReducer)

means = results[0] /results[1] for result in results

k-means++ via MapReduce

k-means++ Initialization (copied from Wikipedia):

1.
2.

Choose one center uniformly at random from among the data points.

For each data point x, compute D(x), the distance between x and the nearest
center that has already been chosen.

Choose one new data point at random as a new center, using a weighted
probability distribution where a point x is chosen with probability proportional
to D(x)?.

Repeat Steps 2 and 3 until k centers have been chosen.

Now that the initial centers have been chosen, proceed using standard k-
means clustering.

k-means++ via MapReduce

plusPlusMapper(z,) :
compute d,; = ||z, — m;||53 for each i
set j = argmin; d;

it (L, (2p,)
plusPlusReducer(1, [(z,,dp), (24,d,)]) :
set * = xp, with probability d,/(d, + d;) else z,

G‘lltpllt (]- (I: dp T dq))

Result: (1,(z,,1))

k-means++ via MapReduce

Full initialization:
choose random point x
set means = [x]
while length(means) < k:
result = data.map(plusPlusMapper) .reduce(plusPlusReducer)
means . append (result [1] [0])

k-means™ via MapReduce

starStarMapper(z,) :
with probability o :
compute d,; = ||z, —m;||5 for each i
set j = argmin; dp;

emit (7, (xp,1))

starStarReducer(i, [(z,,v}), (24,7,)]) :

output (%, (z, + z,,vp +1,))

Result: (.*, (Z Fis; |Ct|)) for each sampled cluster C;
rpEC;

k-means™ via MapReduce

Full algorithm:
initialize means
set alpha = 0.1, beta = 1.5
while not converged or alpha < 1:
results = data.map(kMeansMapper) .reduce (kMeansReducer)

means = results[0]/results[1] for result in results

set alpha = min(alpha * beta, 1)

Average Error
Minimum Error

Average Time

Empirical Results

k-means
181.9
103.7
3003

k-means++
106.1
99.8

4375

n = 2.5 million, d =68, k=10

k-means**
252.7
108.7

1705

Thank you!

