

Parallel Sparse K-Means

Application to document clustering

Victor Storchan May 31, 2016

Stanford University, CME 323 (R.Zadeh)

Goal of the Parallel Sparse KMeans-Algorithm's project:

Goal of the Parallel Sparse KMeans-Algorithm's project:

• Implement a Parallel Sparse version of K-Means to typically cluster very sparse data (e.g text data).

Goal of the Parallel Sparse KMeans-Algorithm's project:

- Implement a Parallel Sparse version of K-Means to typically cluster very sparse data (e.g text data).
- Apply it to the 20 Newsgroups data set.

Goal of the Parallel Sparse KMeans-Algorithm's project:

- Implement a Parallel Sparse version of K-Means to typically cluster very sparse data (e.g text data).
- · Apply it to the 20 Newsgroups data set.
- Compare the scalability of the initialization methods when they are applied to PARALLEL SPARSE KMEANS-ALGORITHM

Parallel Sparse KMeans-Algorithm

Parallel Sparse KMeans-Algorithm

K-Means perform badly on noisy features.

Assumption: Dissimilarity is additive with respect to any feature.

Idea: In sparse data, features are either noisy or clustering features.

- Associate weight 0 to noise features and positive weight to clustering features.
- run K-Means on the modified matrix.

K-Means supports 3 different initialization steps:

K-Means supports 3 different initialization steps:

· random, not efficient

K-Means supports 3 different initialization steps:

- · random, not efficient
- K-Means++, 8log(K)-approximation of the optimum, not scalable

K-Means supports 3 different initialization steps:

- · random, not efficient
- K-Means++, 8log(K)-approximation of the optimum, not scalable
- K-Means||, efficient (O(log(K)-Approximation algorithm) and scalable

K-Means supports 3 different initialization steps:

- · random, not efficient
- K-Means++, 8log(K)-approximation of the optimum, not scalable
- K-Means||, efficient (O(log(K)-Approximation algorithm) and scalable

Idea: A point x has as many chances to get selected in $\mathcal C$ as it is far from the previous centers.

All the algorithms involved here are detailed in the annex of this presentation.

Parallel Sparse KMeans-Algorithm

The Parallel Sparse KMeans-Algorithm is combining:

- · initialization with K-Means||.
- K-Means iterations in parallel on the weighted matrix of prediction using as many CPUs as available.

Work and Depth Analysis

Notations:

- K: Number of clusters
- N: Number of points (ie number of documents)
- p: Dimension of the underlying space: Number of features
- s: Number of nodes in the cluster

Work and Depth Analysis

```
Total work of K-Means||: O(log(\psi)*K^3*N^2*p).

Total depth for K-Means||: is O(log(p) + log(K) + log(N)).

Let's suppose K-Means converges in R steps. Then:

Total work of PSK-Algorithm: O(W_{K-Means||} + R*|\tilde{\mathcal{C}}|*p*N).

Total depth of PSK-Algorithm: O(D_{K-Means||} + R*(log(p) + log(|\tilde{\mathcal{C}}|) + log(N))).
```

PSK-Algorithm on a cluster

Communication cost for K-means:

Master machine reads the clustering center files and shuffles it to the machines.

Mapper_i for $i \in \{1, ..., s\}$ assigns a cluster center for each points $x \in X_i \subset X$ and record the local minimum distance $d(c_i, X_i)$.

s vectors of length k are reduced.

Reducers compute the global sums, update the centers and send this data to all the processors with an MPI_AllRedude procedure.

=> Communication cost: O(sK).

Communication cost for K-means||: O(s).

Document Clustering

20 newsgroups Data Set

computer	recreational	science
comp.graphics	rec.autos	sci.crypt
comp.os.ms-windows.misc	rec.motorcycles	sci.electronics
comp.sys.ibm.pc.hardware	rec.sport.baseball	sci.med
comp.sys.mac.hardware	rec.sport.hockey	sci.space
comp.windows.x		

misc.forsale	religion	talk.politics	
misc.forsale	talk.religion.misc	talk.politics.misc	
	alt.atheism	talk.politics.guns	
	soc.religion.christian	talk.politics.mideast	

The Term Frequency-Inverse Document Frenquency transformation

TF-IDF transformation: a document-to-vector map which is:

The Term Frequency-Inverse Document Frenquency transformation

TF-IDF transformation: a document-to-vector map which is:

Relevant to text processing

The Term Frequency-Inverse Document Frenquency transformation

TF-IDF transformation: a document-to-vector map which is:

- Relevant to text processing
- Common web analysis algorithm

The Pipeline

Results

To the sake of comparison, Naive Bayses gives an accuracy of 0.4515.

Scaling

Figure 1: Runtime of initializations with respect to data size

Conclusion

Summary

PARALLEL SPARSE KMEANS-ALGORITHM:

- · Scalable with respect to the size of the data
- differentiate clustering features from noise.

Code location:

https://github.com/victorstorchan/doc_clustering

Thank you! Questions?

Annex

type of initialization	accuracy for K=20	total time
random	0.4394	84.6117
K-Means++	0.6124	156.9197
K-Means	0.6124	90.6363

type of initialization	accuracy for K=7	total time
random	0.5741	57.9025
K-Means++	0.6718	74.8596
K-Means	0.6718	60.7070

Term Frequency/Inverse Document Frequency

$$tf_i = \frac{n_i}{\sum n_k}$$
 and $idf_i = log \frac{|D|}{|\{d : t_i \in d\}|}$

|D|: total number of documents in the corpus

 $\{d: t_i \in d\}$: number of documents where the term t_i appears.

```
Algorithm 2 K-Means++

1: procedure K-Means++

2: C \leftarrow Sample one point uniformly at random in X

3: while |C| < K do

4: Sample x \in X with probability \frac{d^2(x,C)}{\phi_X(C)}

5: C \leftarrow C \cup \{x\}
```

```
Algorithm 3 K-Means||

1: procedure K-Means||

2: \tilde{C} \leftarrow \text{Sample} one point uniformly at random in X

3: \psi \leftarrow \phi_X(\tilde{C})

4: for O(\log(\psi) times do

5: C' \leftarrow \text{Sample} each x \in X independently with probability \frac{ld^2(x,\tilde{C})}{\phi_X(\tilde{C})}

6: \tilde{C} \leftarrow \tilde{C} \cup C'

7: for x \in \tilde{C} do

8: set w_x = \# { points in X closer to x than any other points in \tilde{C} }

9: Recluster the weighted points in \tilde{C} into K clusters: use K-Means++ on

10: \{w_1c_1 \in R^p, ..., w_{|\tilde{C}|}c_{|\tilde{C}|} \in R^p\}. Return C
```

Parallel Sparse KMeans-Algorithm

Algorithm 5 PSK - Algorithm

- 1: procedure PSK-Algorithm
- Run SK-Means with modified step (a):
- 3: When performing K-means on the weighted data, initialize the procedure with
- 4: K-Means|| and run the K-Means iterations in parallel using as many CPUs as
- available.

```
Algorithm 1 SK - Means(K)
```

```
1: procedure SK-MEANS
         w \leftarrow \frac{1}{n}[1, 1, ..., 1]^T
         Repeat (until convergence):
             Step (a): Y := [\sqrt{w_1}X_1, ..., \sqrt{w_p}X_p]
             for a given w, perform K-means on the transformed data set Y:
              solve \tilde{C} = argmin_{|C|=K}WSS_y(C) where WSS_y(C) is the within cluster sum of squares
 7:
              on Y.
               Step (b):
 9:
              For a given \tilde{C}, maximize ith respect to w: set D = [BSS_1(\tilde{C}), ..., BSS_p(\tilde{C})] and solve:
10:
                                                        \tilde{w} = max_w w^T D
                                                  such that \left\{ \begin{array}{l} \|w\|_1 \leq l_1 \\ \|w\|_2^2 \leq 1 \end{array} \right.
```

Future work

- · Use a parallel spherical K-Means
- PARALLEL SPARSE KMEANS-ALGORITHM is affected by a even few outliers. Implement a parallel robustification of it.