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Collaborative Filtering 
Alt. Linear Regression Alt. Logistic Regression 

application direct feedbacks (rating)  indirect feedbacks (click) 
distribution normal binomial 
link function 
loss function square error logistic loss 
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Generalized Linear Models 



Distributed Algorithm 
(assuming nm × k fits in a single machine) 

Input entries 
RDD[u, m, y] RDD[u, map(m -> (t, n)] 

reduceByKey 
+ 

aggregateByKey 
T 

User features 
RDD[u, vector] 

U Movie features 
Array[vector] 

M 

for each iteration: 
•  Join U with T to from D (co-partitioned join)  
•  Update M 
•  Broadcast M (communication: log(p)(nMk)) 
•  Update U  

  

 

Sufficient Stat. 



Update M 
for each movie: 
•  prepare dataframe by filter() 

and map() on D 

•  distributed logistic regression 

•  LogisticRegression() 
•  reduction and  broadcast 

of size k 

Update U 
Map local logistic regression 
to users 

•  added local training 
method to 
LogisticRegression() 

•  no communication of data 

Summary 
•  Sparsity is preserved with condensed entries 
•  Scales in nU, but not nM or k 
•  Communication cost: log(p)(nMk) 

•  Computational depth: log(nU)(nMk) 
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