
CME 323: Distributed Algorithms and Optimization, Spring 2017

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 19, 6/7/2017. Scribed by A Santucci.

1 PRAM Model

1.1 Sequential model of computation

Random Access Memory (RAM) model is the typical sequential model. We are given a processor

p1, and it’s attached to a memory module m1. The processor p1 can read and write to memory in

constant time. This is the model we are used when using loops in C or Java. In RAM Models,

we typically count the number of operations and assert that the time taken for the algorithm is

proportional to the number of operations required. I.e., time taken ∝ number of operations.

1.2 Parallel model of computation

In a Parallel RAM (PRAM) Model, we always have multiple processors.

RAM

p0 p1 p2 p3

hard disk

But how these processors interact with the memory module(s) may have different variants.

The different ways a PRAM model can be set up is the subset of the following combinations:

{Exclusive,Concurrent} × {Read,Write}. Of these combinations, the most popular model is the

concurrent read and exclusive write model.

1.3 Constructing a DAG from an algorithm

It is natural to represent the dependencies between operations in an algorithm using a directed

acyclic graph (DAG). Specifically, each fundamental unit of computation is represented by a node.

We draw a directed arc from node u to node v if computation u is required as an input to com-

putation v. We trivially note that our resulting graph surely ought to be connected (otherwise the

isolated node[s] represent useless computations), and by definition it’s acyclic (otherwise we have

an infinite loop). Hence its a tree. The root of the tree represents the output of our algorithm, and

its children are the dependencies.

1

http://stanford.edu/~rezab/dao

Figure 1: Example Directed Acyclic Graph (DAG)

1.4 Work Depth Model

In a PRAM, we have to wait for the slowest processor to finish all of its computation before we can

declare the entire computation to be done. This is known as the depth of an algorithm. Let

T1 = amount of (wall-clock) time algorithm takes on one processor = # nodes in DAG, and

T∞ = amount of (wall-clock) time algorithm takes on ∞ processors = # levels in DAG.

Theorem 1.1 (Brent’s Theorem) We claim that T1
p ≤ Tp ≤

T1
p + T∞.

Proof: On level i of our DAG, there are mi operations. Hence by that definition, since T1 is

the total work of our algorithm, T1 =
∑n

i=1mi where we denote T∞ = n. For each level i of the

DAG, the time taken by p processors is given as T i
p =

⌈
mi
p

⌉
≤ mi

p + 1. This equality follows from

the fact that there are mi constant-time operations to be performed at mi, and once all lower levels

have been completed, these operations share no inter-dependencies. Thus, we may distribute or

assign operations uniformly to our processors. The ceiling follows from the fact that if the number

of processors not divisible by p, we require exactly one wall-clock cycle where some but not all

processors are used in parallel. Then,

Tp =
n∑

i=1

T i
p ≤

n∑
i=1

(
mi

p
+ 1

)
=
T1
p

+ T∞

1.5 Types of Scaling

Let T1,n denote the run-time on one processor given an input of size n. Suppose we have p processors.

We define the speed up of a parallel algorithm as SpeedUp(p, n) =
T1,n

Tp,n
.

Definition 1.1 If SpeedUp(p, n) = Θ(p), we say that the algorithm is strongly scalable.

Definition 1.2 We sometimes are interested to consider the case where for each processor we add,

we add more data as well. If SpeedUp(p,np) =
T1,n

Tp,np
= Ω(1), then our algorithm is weakly scalable.

2

Definition 1.3 The last notion of scalability is the case when our algorithm is embarrassingly parallel.

This is true if our DAG has nodes 0-depth, e.g.

2 Scheduling

Problem Statement We assume that the processors are identical (i.e. each job takes the same

amount of time to run on any of the machines). More formally, we are given p processors and

an unordered set of n jobs with processing times J1, . . . , Jn ∈ R. Say that the final schedule for

processor i is defined by a set of indices of jobs assigned to processor i. We call this set Si. The

load for processor i is therefore, Li =
∑

k∈Si
Jk. The goal is to minimize the makespan defined as

Lmax = maxi∈{1,...,p} Li.

Algorithm We present the following simple algorithm.

1 for each job that comes in (streaming) do

2 Assign job to lowest burdened machine

3 end
Algorithm 1: Simple scheduler

Analysis Greedy algorithm has an approximation ratio of 2.

Proof: We know that the optimal makespan must be at least the sum of the processing times for

the jobs divided amongst the p processors, i.e. OPT ≥ 1
p

∑n
i=1 Ji. A second lower bound is that

OPT is at least as large as the time of the longest job, OPT ≥ maxi Ji.

Now consider running the greedy algorithm and identifying the processor responsible for the

makespan of the greedy algorithm (i.e. k = argmaxiLi). Let Jt be the load of the last job placed

on this processor. Before the last job was placed on this processor, the load of this processor was

thus Lmax - Jt. By the definition of the greedy algorithm, this processor must have also had the

least load before the last job was assigned. Therefore, all other processors at this time must have

had load at least Lmax− Jt, i.e. Lmax− Jt ≤ L′i for all i. Hence, summing this inequality over all i,

p(Lmax − Jt) ≤
p∑

i=1

L′i ≤
p∑

i=1

Li =

n∑
i=1

Ji (1)

In the second inequality, we assert that although Jt the last job placed on the bottleneck processor,

there may still be other jobs yet to be assigned, hence we have that the sum of total work placed

on each machine cannot decrease after assigning all jobs. The last equality comes from the fact

that the sum of the loads must be equal to the sum of the processing times for the jobs.

Rearranging the terms in equation 1 let’s us express this as: Lmax ≤ 1
p

∑n
i=1 Ji + Jt. Now, note

that our greedy algorithm actually has makespan exactly equal to Lmax, by definition. Using our

lower bounds on OPT, along with the fact that Jt ≤ maxi Ji, we get that our greedy approximation

algorithm has makespan not more than 2 times more than the optimal.

3

3 All Prefix Sum

Problem Statement Given a list of integers, we want to find the sum of all prefixes of the list,

i.e. the running sum. We are given an input array A of size n elements long. Our output is of size

n+ 1 elements long, and its first entry is always zero.

Algorithm The general idea is that we first take the sums of adjacent pairs of A. So the size of

A′ is exactly half the size of A. If the size of A not a power of 2, we simply pad it with zeros.
Input : An array A

Output: An array containing a running sum of elements in input A

1 if size of A is 1 then return only element of A;

2 Let A′ be the sum of adjacent pairs // O(n) work

3 Compute R′ = AllPrefixSum(A′) // Recursive call of size n/2

4 Fill in missing entries of R′ using another n
2 processors // O(n) work, constant depth

Algorithm 2: Prefix Sum

Pairing entries gets a running sum for even parity indices. We define rk =
∑k

i=1 ai, i.e. a

running sum through index k. To fill in running sum for odd indices, we adhere to the following

formula: ri = ri−1 + ai for odd indices i.

Analysis Given by

W (n) = W (n/2) +O(n) =⇒ W (n) = O(n)

D(n) = D(n/2) +O(1) =⇒ D(n) = O(log n)

4 MergeSort

All the interesting work in this algorithm below is actually done in the parallel-merge subroutine.

Input : Array A with n elements

Output: Sorted A

1 if |A| is 1 then return A;

2 else // (In parallel, do)

3 L← merge-sort(A[0:n/2]) // Recursive call of size n/2

4 R← merge-sort(A[n/2:n]) // Recursive call of size n/2

5 return parallel-merge(L,R) // O(n log n) work, O(log n) depth

6 ;
Algorithm 3: merge-sort

When we use parallel-merge in our merge-sort algorithm, we realize the following work and

depth, by the master theorem:

4

Input : Two sorted arrays A,B each of length n

Output: Merged array C, consisting of elements of A and B in sorted order

1 for each a ∈ A do // In parallel...

2 Do a binary search to find where a would be added into B, // O(log n) work

3 The final rank of a given by rankM (a) = rankA(a) + rankB(a).;
Algorithm 4: parallel-merge subroutine

W (n) = 2W (n/2) +O(n log n) =⇒ W (n) = O(n log2 n),

D(n) = D(n/2) + log n =⇒ D(n) = O(log2 n).

By Brent’s Theorem, we get Tp ≤ O(n log2 n)/p+O(log2 n), so for large p we significantly outper-

form the naive implementation!

5 Parallel Quick-Select and Order Statistics

Given a sequence a and an integer k where 0 ≤ k < |a|, find the kth smallest element in the

sequence, i.e. the kth order statistic. Naively, we may first sort the data, then select the kth

element; this requires O(n log n) work. In lecture 4, we learn to get away with linear work in

expectation and O(log2 n) depth.

Input : Array A with n entries, integer k ≤ n
Output: Value of the kth largest element in A

1 p← a value selected uniformly at random from A

2 L(, R)← elements in A which are less (,larger) than pivot p // Θ(n) work, O(log n) depth

3 if |L| is k − 1 then return p;

4 if |L| > k then return Select(L, k) ;

5 else return Select(R, k-|L|-1) ;

Algorithm 5: Select(A, k)

The intuition for analysis is to define “phases” of the algorithm when the input shrinks by 3/4;

we then realize a geometric series, whereby master theorem instructs us that since we perform

linear work per iteration that the total work done is still only linear. We do have to be smart about

how we construct L or R, in order to be depth-efficient.

5

https://stanford.edu/~rezab/dao/notes/lecture04/cme323_lec4.pdf

Input : Array A with n entries, pivot element p

Output: Elements in A that are less than (or greater than) pivot p

1 Construct indicator list BL[0, ..., n− 1], where bi = 1{ai < p} // O(n) work, O(1) depth

2 Compute PrefixSum on BL // O(log n) depth

3 Create the array L of size PrefixSum(BL)[n− 1]

4 for i = 1, 2, . . . , n do L
[
PrefixSum(BL[i])

]
← a[i];

Algorithm 6: Constructing L (or R)

6 Parallel Quick Sort

Parallel quick sort is very similar to parallel selection. We randomly pick a pivot and sort the

input list into two sublists based on their order relationship with the pivot. However, instead of

discarding one sublist, we continue this process recursively until the entire list has been sorted.

Input: An array A

Output: Sorted A

1 p← element of A chosen uniformly at random // Θ(log n) work, O(1) depth

2 L← [a|a ∈ A s.t. a < p] // Implicitly: BL ← 1{ai < p}ni=1, prefixSum(Bl),

3 R← [a|a ∈ A s.t. a > p] // which requires Θ(n) work and O(log n) depth.

4 return [QuickSort(L), p, QuickSort(R)]
Algorithm 7: QuickSort

In a similar fashion to our analysis for QuickSelect, we may consider the number of recursive

calls made to our algorithm when our input array is of size
(
3
4

)k+1
n < |A| <

(
3
4

)k
n, and denote

this quantity by Xk. We saw that if we select a pivot in the right way, we can reduce input size by

3/4.

If we select any of these elements in red as a pivot,

where we visualize the elements being in sorted or-

der, then both L and R will have size ≤ 3
4n.

1
4

3
4

Figure 2: Ideal Pivot Selection

Depth analysis We saw that E[Xk] = 2, since it’s a geometric random variable (i.e., we con-

tinually make calls to QuickSort until we successfully reduce our input size by at least 3/4. In

expectation, this takes two trials. Hence in expectation we require 2c log4/3 n recursive calls to be

made before we reach a base case. At each level in our DAG, our algorithm requires O(log n) depth

since the bottleneck is in constructing L and R and specifically in the call to Prefix Sum. Hence in

6

expectation our total depth given by the expected number of levels times the expected depth per

level: E[D(n)] = O(log2 n).

Work analysis There are in expectation O(log n) levels in our DAG, and in each we perform

O(n) work, whence the algorithm requires O(n log n) work.

7 Matrix Multiplication on PRAM

We now consider parallel matrix-multiplies on a PRAM. The idea behind Strassen’s algorithm is in

the formulation of matrix multiplication as a recursive problem. We first cover a variant of the naive

algorithm, formulated in terms of block matrices, and then parallelize it. Assume A,B ∈ Rn×n and

C = AB, where n is a power of two. We write A and B as block matrices,

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
,

where block matrices Aij are of size n/2×n/2 (same with respect to block entries of B and C).

Trivially, we may apply the definition of block-matrix multiplication to write

C11 = A11B11 +A12B21, C12 = A11B12 +A12B22, C21 = A21B11 +A22B21, C22 = A21B12 +A22B22.

Further, realize that the four block entries of C may be computed independently from one

another, hence we may come up with the following recurrence for work:

W (n) = 8W (n/2) +O(n2) =⇒ W (n) = O(nlog2 8) = O(n3)

since there are 8 matrix multiplies, each of size n/2, as well as 4 matrix additions of size n× n.

7.1 Strassen’s algorithm

We now turn toward Strassen’s algorithm, such that we will be able to reduce the number of sub-

calls to matrix-multiplies to 7, using just a bit of algebra. In this way, we bring the work down to

O(nlog2 7). How do we do this? We use a factoring scheme. We write down Cij ’s in terms of block

matrices Mk’s. Each Mk may be calculated simply from products and sums of sub-blocks of A and

B, where crucially each factor requires only one matrix-multiply; since each factor expands by the

distributive property, they contain additional information. Whence the work is given by

W (n) = 7W (n/2) +O(n2) =⇒ W (n) = O(nlog2 7).

8 Graph algorithms

8.1 MST

Kruskal’s algorithm is instructive in that it uses the Cut Property which we proved last lecture.

Our parallel algorithm, which is really Boruvka’s algorithm, will also use this property. A single

7

node is a subset of the nodes, i.e. each node can be considered individually to define a cut. And

so if you look at a single node and its incident edges, the smallest one must be in the MST by

applying the cut property. Realize that if we determined the smallest weight edge incident to each

node in our graph, we must find at least n/2 unique edges belonging to the MST.

Input : Graph G, represented by adjacency list

1 for each node, in parallel do

2 Compute smallest weight incident edge // O(m) work, O(log n) depth

3 end

4 Contract edges // O(m log n) work

5 Merge Adjacency Lists // O(n) work and O(1) depth

6 Recurse
Algorithm 8: Boruvka’s Algorithm

For detailed analysis, see lecture 6. To find smallest weight incident edges, we scan through∑
v∈V deg(v) = 2m edges in total. The depth given by O(

∑
v∈V log deg(v)) since we use parallel

quick-select to find the smallest weight edge in each nodes incident list.

9 Optimization algorithms

Many learning algorithms can be formalized with the following unconstrained optimization problem:

min
w

F (w) =

n∑
i=1

Fi(w, xi, yi)

where i indexes the data, xi ∈ Rd is an input vector, yi ∈ R is a label and w is the parameter

we wish to optimize over. The general idea of gradient descent is based on initializing w at random

and performing the sequential updates: wk+1 ← wk − α∇f(wk), where if α small enough, then F

is guaranteed to decrease.1 The objective function F depends on the problem at hand. E.g.

• squared error loss function, yields least squares Fi(w, xi, yi) = ||xTi w− yi||22 (strongly convex)

• a logistic loss leads to logistic regression (convex)

• cross-entropy (e.g: for logistic regression or neural nets) (not convex)

• hinge loss Fi(w, xi, yi) = max(1− yi(xTi w)) with yi ∈ {−1,+1} (e.g: for SVM). (convex)

9.1 Analyzing least squares gradient descent

Consider the complexity of computing the gradient of the least squares objective,

F (w) =

n∑
i=1

Fi(w, xi, yi) =

n∑
i=1

||xTi w − yi||22.

1Want α < 1
L

where L is the Lipschitz constant for F .

8

https://stanford.edu/~rezab/dao/notes/lecture06/cme323_lec6.pdf

Evaluating the objective function requires work O(nd) and depth O(log n+ log d). Its gradient is

∇wF =
n∑

i=1

∇wFi(w) =
n∑

i=1

2(xTi w − yi)xi ∈ Rd

Here, we see that the gradient is just a re-scaling of xi. Computing the gradient for a single

datapoint can be done in O(log d) depth (the computation being dominated by the dot product

operation). The global gradient ∇wF then requires O(log d) +O(log n) depth.

9.2 Stochastic Gradient Descent

SGD only makes sense for separable objective functions F =
∑n

i=1 Fi(w, xi, yi); it’s not even a

well formed question to ask whether we can do SGD on a non-separable objective. How does it

work? Randomly select one training point and evaluate the gradient there. If we sample uniformly

at random, we hope that our algorithm will converge (and it does). Let sk be index uniformly

sampled at time step k. Then, the SGD iteration as follows:

wk+1 ← wk − α∇Fsk(wk).

What are the issues that arise when trying to evaluate SGD iteration? Suppose we

have many cores, and the current model w is on shared memory. The cores all have access to the

training data as well. Why can’t each core, say, do one sample and then do the update? Without

communication between processors, two issues may occur

1. Model used by core might be obsolete by the time it tries to write the update, and

2. the new update may be overwritten by a stale one.

Going Hogwild! If we assume sparsity of our data, then we can go Hogwild! and write con-

currently. The idea is that each processor only overwrites a small, distinct location of w each

iterate.

10 Streaming algorithms

Covered in detail on midterm.

11 Communication patterns

• None: map, filter

• All to one: reduce

• One to all: broadcast

• All to all: join, groupByKey, reduceByKey

9

We emphasize that reduce and reduceByKey are two completely different communication pat-

terns.

12 SQL using mapreduce

12.1 Group-by using map reduce

We first implement a group-by, which groups all rows that have the same key and performs an

aggregation function on remaining columns. A map reduce is just that. To implement a group-by

using map reduce, all we have to do is

1 Map: emit the group-by column as key and pertinent columns for computation as value

2 Reduce: perform desired aggregation function on non-group-by columns in the reducer
Algorithm 9: group by using map reduce

12.2 SQL (inner) join using map reduce

Suppose we want to merge tables T1 and T2, where table T1 is small enough to fit in memory.

1 Place hashed T1 on each machine via a broadcast

2 Perform an inner join of whatever data in T2 is stored locally on each machine with its local

copy of (hashed) T1
Algorithm 10: (Hash or Broadcast) Inner Join

Each machine does a join of what it owns from T2 with all-of T1. We don’t even need to

communicate this result to other machines, we can just leave the merged data local. The inner join

that is performed locally on each machine can be done just as we did on the midterm.

12.3 Other examples

See this link.

13 Distributed Sort

1 Each machine sorts its own data

2 Each machine samples 100 data points from its local data and sends to a driver node

3 Driver approximates integer distribution by sorting its sampled data

4 From this estimate, driver can determine cutoff thresholds for each machine

5 All thresholds are broadcast to all machines, i.e. each machine knows its relevant data

6 All-to-all communication: each machine shuffles data to correct location

7 Each machine sorts the incoming (sorted) partitions that it gets sent in linear time
Algorithm 11: Distributed sort

10

https://chamibuddhika.wordpress.com/2011/11/11/modelling-sql-queries-using-map-reduce/

14 Mapreduce contract

We’re in a distributed computing environment. Map-reduce is a two phase contract.

1. Map phase: data fed into a map algorithm (user-provided), outputting key-value pairs.

2. Reduce phase: all pairs with the same key are guaranteed to show up on a single machine.

Between the map and reduce stage, there is a hidden and implicit sort performed. Why is this

necessary? Put another way, how can we implement the promise that all pairs with the same key

show up on a single machine; how do we implement this shuffle phase? Map each key to an integer,

sort the integers, and then the data with the same key will show up on the same machine.

What does map reduce provide? It provides fault-tolerance in the case of hardware failure.

They also provide a distributed file system that backs up your data at least three times. It also

abstracts away details of communication patterns.

15 Complexity measures for mapreduce

During a MapReduce algorithm, 3 main stages are involved while computing the complexity. First,

all of the map tasks have to finish. Second, all of the pairs which need to be on the same machine

need to be shuffled. Finally, reducers take some time to finish. As a consequence, we will provide

3 complexity time measures corresponding to these 3 stages:

• Mappers cost time: it is simply the time the map phase takes. All the mappers have to

do their computation and split out the pairs. (this is embarrassingly parallel work, so we can

use the same analysis tools that we know for a single processor computation and take the

worst one.)

• Shuffle cost time: numbers of items the mappers output to be sorted: how many tuples

have to be sorted. Note that although the keys are hashable, you can not just assume that

the sort time will be O(n) as in practice, a more complex analysis involving the number of

machines and the architecture would have to be done.

• Reducers cost time: How long it takes for the slowest reducer to finish.

Any of these measures could be the bottleneck of the overall analysis of a MapReduce algorithm.

11

16 Practice problem: Leftmost One

Input : A 0-1 bit array A, of length n

Output: Smallest k ∈ [1, n] such that A[k] = 1
Algorithm 12: Leftmost One

Design an algorithm for solving Leftmost One problem in Θ(n) work and Θ(log n) depth.

Provide pseudocode and an analysis.

17 Practice Problem: Maximal Independent Set

Problem 1 from the following link.

18 Practice Problem: Solving Linear Systems

Consider the system of linear equations
1

a2 1

a3 1
. . .

. . .

an 1


x1...
xn

 =

y1...
yn



where ais and yis given and we wish to solve for x. Write a short program to compute x sequentially.

What is the running time? Use O(·) notation. Show how to compute all the xi’s in O(log n) time

using parallel prefix.

Additional Thought Exercise How would you generalize your program to a linear system with

non-zeroes only on the diagonal and in the first m sub-diagonals.

References

[1] Rezaul A. Chowdhury Parallel Programming. Stonybrook Computer Science. midterm, final.

[2] Umut A. Acar and Guy E. Blelloch Algorithm Design: Parallel and Sequential. Carnegie

Mellon Computer Science. parallel-algorithms-book.

[3] Buddhika Chamith Modelling SQL queries using Map Reduce. wordpress.

[4] Jim Demmel Applications of Parallel Computers. course website.

[5] Umut A. Acar and Arthur Chargueraud and Mike Rainey An Introduction to Parallel Com-

puting in C++. website.

12

https://www3.cs.stonybrook.edu/~rezaul/Spring-2012/CSE613/CSE613-final.pdf
https://www3.cs.stonybrook.edu/~rezaul/Spring-2012/CSE613/CSE613-midterm.pdf
https://www3.cs.stonybrook.edu/~rezaul/Spring-2012/CSE613/CSE613-final.pdf
http://www.parallel-algorithms-book.com/
https://chamibuddhika.wordpress.com/2011/11/11/modelling-sql-queries-using-map-reduce/
https://people.eecs.berkeley.edu/~demmel/cs267/
https://www.cs.cmu.edu/~15210/pasl.html

	1 PRAM Model
	1.1 Sequential model of computation
	1.2 Parallel model of computation
	1.3 Constructing a DAG from an algorithm
	1.4 Work Depth Model
	1.5 Types of Scaling

	2 Scheduling
	3 All Prefix Sum
	4 MergeSort
	5 Parallel Quick-Select and Order Statistics
	6 Parallel Quick Sort
	7 Matrix Multiplication on PRAM
	7.1 Strassen's algorithm

	8 Graph algorithms
	8.1 MST

	9 Optimization algorithms
	9.1 Analyzing least squares gradient descent
	9.2 Stochastic Gradient Descent

	10 Streaming algorithms
	11 Communication patterns
	12 SQL using mapreduce
	12.1 Group-by using map reduce
	12.2 SQL (inner) join using map reduce
	12.3 Other examples

	13 Distributed Sort
	14 Mapreduce contract
	15 Complexity measures for mapreduce
	16 Practice problem: Leftmost One
	17 Practice Problem: Maximal Independent Set
	18 Practice Problem: Solving Linear Systems

