
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

TA: Robin Brown (rabrown1@stanford.edu)

HW#1 – Due Thursday April 23 (on Gradescope)

1. The Karatsuba algorithm multiplies two integers x and y. Assuming each has n bits
where n is a power of 2, it does this by splitting the bits of each integer into two halves,
each of size n/2. For any integer x we will refer to the low order bits as xl and the
high order as xh. The algorithm computes the result as follows:1

function km(x, y, n):
if n = 1 then

return x× y
else
a← km(xl, yl)
b← km(xh, yh)
c← km(xl + xh, yl + yh)
d← c− a− b
return (b2n + d2n/2 + a)

end if

Note that multiplying by 2k can be done just by shifting the bits over k positions.

(a.) Assuming addition, subtraction, and shifting take O(n) work and O(n) depth
what is the work and depth of km?

(b.) Assuming addition, subtraction, and shifting take O(n) work and O(log n) depth
what is the work and depth of km?

2. Suppose a square matrix is divided into blocks:

M =

[
A B
C D

]
where all the blocks are the same size. The Schur complement of block D of M is
S = A−BD−1C. The inverse of the matrix M can then be expressed as:

M−1 =

[
S−1 S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

]
This basically defines a recursive algorithm for inverting a matrix which makes two
recursive calls (to calculate D−1 and S−1), several calls to matrix multiply, and one
each to elementwise add and subtrace two matrices. Assuming that matrix multiply has
work O(n3) and depth O(log n) what is the work and depth of this inversion algorithm?

1If you have seen this before, you might have thought of it as a sequential algorithm, but actually it is a
parallel algorithm, since in particular, the three recursive calls to km can be made in parallel.

3. Describe a divide-and-conquer algorithm for merging two sorted arrays of lengths n
into a sorted array of length 2n. It needs to run in O(n) work and O(log2 n) depth.
You can write the pseudocode for your algorithm so that it looks like your favorite
sequential language (C, Java, Matlab, . . .), but with an indication of which loops or
function calls happen in parallel. For example, use parallel for for a parallel for
loop, and something like:

parallel {
foo(x,y)
bar(x,y)

}
to indicate that foo and bar are called in parallel. You should prove correctness at
the level expected in an algorithms class (e.g. CME305 or CS161).

4. Given the price of a stock at each day for n days, we want to determine the biggest
profit we can make by buying one day and selling on a later day. For example, the
following stock prices have a best profit of 5:

[12, 11, 10, 8, 5, 8, 9, 6, 7, 7, 10, 7, 4, 2]

since we can buy at 5 on day 5 and sell at 10 on day 11. This has a simple linear time
serial solution. Give an algorithm to solve this problem that runs in O(n) work and
O(log n) depth. Give pseudocode as in the previous problem.

5. In this problem, we’ll look at how fast the maximum of a set of n elements can be
computed when allowing for concurrent writes. In particular we allow the arbitrary
write rule for “combining” (i.e. if there are a set of parallel writes to a location, one
of them wins). Show that this can be done in O(log log n) depth and O(n) work.

(a.) Describe an algorithm for maximum that takes O(n2) work and O(1) depth (using
concurrent writes).

(b.) Use this to develop an algorithm with O(n) work and O(log log n) depth. Hint:
use divide and conquer, but with a branching factor greater than 2.

6. Scheduling to Minimize Lateness Consider a problem where we have a single
resource and a set of n requests to use the resource for an interval of time. Assume
each request has a deadline di, and a length ti required to complete the request. For
each job we need to assign a start time s(i) (its finish time is f(i) = s(t) + ti). We say
request i is late if f(i) > di, and the lateness of task i is given by li = max{0, f(i)−di}.
Design a greedy algorithm that always produces the optimal solution, and prove that
the resulting schedule is optimal.

7. Solving Linear Systems

Lower Triangular Systems Consider the task of solving the linear system Ax = b
where we assume A is lower triangular. A popular method for solving Ax = b is forward
substitution. The forward substitution algorithm can be represented as the following
series of serial updates:

2

x1 ← b1/a11
for i = 2, . . . , n do

xi ←
(
bi −

∑i−1
j=1 lijxj

)
/aii

end for

(a) What is the computation complexity of the forward substitution algorithm?

The parallel forward substitution algorithm operates by parallelizing the serial
forward substitution algorithm. Note that the yj updates can all be executed in
parallel.

x1 ← b1/a11
for i = 2, . . . , n do
xi ← (bi − yi)/aii
for j = i + 1, . . . , n do
yj ← aj1x1 + . . . + ajixi

end for
end for

(b) Construct the DAG representing the parallel forward substitution algorithm.
What is the depth of the DAG?

Tridiagonal Systems We now consider solving the system Ax = b where A is tridi-
agonal. Explicitly, aij = 0 if |i − j| ≥ 2. Note that this is equivalent to solving the
following system of linear equations:

g1x1 + h1x2 = b1

fixi−1 + gixi + hixi+1 = bi, i = 2, . . . , n− 1

fnxn−1 + gnxn = bn

where gi are the diagonal elements of A, fi the entries below the diagonal, and hi

the entries above the diagonal. The idea behind even-odd reductions is to recursively
reduce the above system to one of half the size. Explicitly, if none of the diagonal
entries are zero, we can solve for each xi in terms of xi−1 and xi+1. If we do this for
all odd i, and substitute the expression back in, we obtain a system on just the even
indexed variables.

(a) Using the above system of equations, derive a tridiagonal system of equations on
just the even indexed variables.

(b) What is the computational complexity of computing the coefficients of the reduced
system?

The above procedure can be recursively applied until the problem is reduced to a
single equation. Then we work backwards to solve for the value of the eliminated
variables.

(c) What is the computational complexity of solving for the eliminated variables?

3

(d) Construct the DAG representing this algorithm.

(e) What is the runtime of the even odd reduction algorithm on O(n) processors?

Givens Rotations Givens Rotations are used to zero out the subdiagonal entries of
the matrix A one at a time. Crucially, a Givens rotation only affects two rows of the
matrix. We will use this fact to derive a parallel implementation of the Givens rotation
algorithm. Specifically, if two successive Givens rotations affect disjoint sets of rows,
then they can be computed in parallel.

(a) When n rows are available, what is the maximum number of Givens rotations we
can apply simultaneously?

Implementing the Givens rotations in parallel ultimately comes down to deriving a
schedule of the entries to eliminate at a particular step. We consider two functions
T (j, k) and S(j, k) where T (j, k) represents the iteration in which the jkth entry
is eliminated, and j and S(j, k) are the rows the Givens rotation operates on.
To simulateneously implement the Givens rotations, we require that T (j, k) and
S(j, k) satisfy:

• If T (j, k) = T (j′, k′) and (j, k) 6= (j′, k′) then {j, S(j, k)} ∩ {j′, S(j′, k′)} = ∅.
• If T (j, k) = t and S(j, k) = i, then T (j, l) < t and T (i, l) < t for all l < k.

(b) Prove that the schedule given by

T (j, k) = n− j + 2k − 1

S(j, k) = j − 1

satisfies the above conditions.

(c) What is the maximum number of stages required by this schedule?

4

