CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

TA: Robin Brown (rabrownl@stanford.edu)

HW#2 — Due Thursday May 7 (on Gradescope)

1. List Prefix Sums As described in class, List Prefix Sums is the task of determining
the sum of all the elements before each element in a list. Let us consider the following
simple variation.

Select each element from the list randomly and independently with probability
1/logn and add it to a set S. Add the head of the list to this set, and mark all
these elements in the list.

Start from each element s € S, and in parallel traverse the lists until you find
the next element in S (by detecting the mark) or the end of the list. For s € S,
call this element found in this way next(s). While traversing, calculate the sum
from s to next(s) (inclusive of s but exclusive of next(s)), and call this sum(s).

Create a list by linking each s € S to next(s) and with each node having weight
sum(s).

Compute the List Prefix Sums on this list using pointer jumping. Call the result
prefixsum(s).

Go back to the original list, and again traverse from each s to next(s) starting
with the value prefixsum(s) and adding the value at each node to a running
sum and writing this into the node. Now all elements in the list should have the
correct prefix sum.

Analyze the work and depth of this algorithm. These should both be given with high
probability bounds.

2. Random Mate on Graphs In class we described a random-mate technique for de-
termining graph connectivity. Each node flips a coin, and every edge from a head to
a tail will attempt to hook the tail into the head (i.e., relabel the tail with the head
pointer). Given a d-regular graph on n vertices, i.e. a graph in which every vertex has
degree d, what is the expected number of vertices after one contraction step?

3. Stochastic Gradient Descent

(a)

In class we proved that gradient descent on L-smooth functions is guaranteed
to decrease the function value at each iteration. Stochastic gradient descent, on
the other hand, does not have the same guarantee. Provide an example where
stochastic gradient descent does not produce a descent step. Specifically, find a
function f(z) = 1", fi(x), and an iterate zy such that for all step sizes, there
exist ¢ such that f(x;) > f(zo) (where z + 1 := 2y — aV fi(2)).

This exercise will guide you through the convergence proof of SGD. As a reminder,

we are proving that if there exists a constant G such that E[||V f;(x)||*] < G? and

f(z) is p-strongly convex. Then, with step-sizes v = ﬁ, we have

max{||z, — 2., %

k

E(fla, — a.]|) <

fen f‘n
\. x ¢
Figure 1: The function-variable and conflict graph for sparse functions.

e Using strong convexity, prove that
(Vf(wr) = V@), ap — w) = (Vf(wy), 6 — w.) > pllzy, — o]

e Apply the previous step, to express E[||zx41 — .||°] in terms of B[]z, — .||*],
Yk, G, and p.

e Prove the convergence of SGD using induction.

4. HOGWILD! This exercise will provide examples applying the main theorem of HOG-
WILD!. Recall that in HOGWILD!, the objective function we want to minimize is :

f(x) = Zfe(xe)

where we define the hyperedge e to be the subset of variables that f. depends on.
Figure 1 depicts such a graph. Then, if we denote the average degree of the conflict
graph as A¢, convergence is still guaranteed if the core delay is less than 7 < ﬁ (i.e.,

no more than 7 samples are being processed while a core is processing one).

e Graph Cuts In graph cuts problems, we are given a sparse matrix W which
indexes similarity between node. We want to match each node to a list of D
classes i.e., we want assign a vector z; € {v € R?| Zle v; = 1,v; > 0} that solve
the following optimization problem.

minimize > W [z — 2l
(u,w)EE
D (1)
subject to z, € {v € R”| Zvj =1,v; > 0}.
j=1
Prove that _
A
=¢ — O (Avg. deg)
n

For the next few problems, we expect that you can learn SQL on your own and answer
the below questions. Some good guides for learning SQL:

(a) https://www.w3schools.com/sgl/sgl_intro.asp
(b) https://www.youtube.com/watch?v=9Pzj7Aj251w

5. In this set of problems, we review how to select data from relational databases.

(a.) Write a SQL statement to find the total purchase amount of all orders. Sample
table: orders.

ord_no purch_amt ord_date customer_id salesman_id
70001 150.5 2012-10-05 3005 5002
70009 270.65 2012-09-10 3001 5005
70002 65.26 2012-10-05 3002 5001
70004 110.5 2012-08-17 3009 5003
70007 948.5 2012-09-10 3005 5002

(b.) Write a SQL statement which selects the highest grade for each of the cities of
the customers. Sample table: customer.

customer_id cust_name city grade salesman_id
3002 Nick Rimando New York 100 5001
3005 Graham Zusi California 200 5002
3001 Brad Guzan London 5005
3004 Fabian Johns Paris 300 5006
3007 Brad Davis New York 200 5001

(c.) Write a SQL statement to find the highest purchase amount on a date “2012-08-
17" for each salesman with their ID. Sample table: orders, used in (a).

6. In this problem, we review how to merge two tables together.

(a.) Write a SQL statement to know which salesman are working for which customer.
Use the sample table customer, used in previous problem, and also salesman.

salesman_id name city commission
5001 James Hoog New York 0.15
5002 Nail Knite Paris 0.13
5005 Pit Alex London 0.11
5006 Mc Lyon Paris 0.14
5003 Lauson Hen 0.12

(b.) Write a query to display all salesmen and customers located in London.

(c.) Write a SQL statement to make a cartesian product between salesman and
customer i.e. each salesman will appear for all customer and vice versa for
those salesmen who belongs to a city and the customers who must have a grade.

(d.) Write a SQL statement to make a report with customer name, city, order number,
order date, and order amount in ascending order according to the order date to
find that either any of the existing customers have placed no order or placed one
or more orders. Use customer and orders tables.

7. In this problem, we consider aggregation of data.

(a.) Write a SQL statement to find the highest purchase amount ordered by the each
customer on a particular date with their ID, order date and highest purchase
amount. Sample table: orders, used in problem 6 part (a).

(b.) Write a SQL query to display the average price of each company’s products, along
with their code. Sample table: item mast.

PROD_1ID PROD_NAME PROD_PRICE PROD_COMPANY
101 Mother Board 3200 15
102 Key Board 450 16
103 ZIP drive 250 14
104 Speaker 550 16
105 Monitor 5000 11
106 DVD drive 900 12

8. Joins with multiple keys The point of this question is to explore how SQL handles
cases where a join is performed on tables containing duplicate rows. Consider the
following table item mast.

PROD_1ID PRODUCT PROD_PRICE PROD_COMPANY
101 Mother Board 3200 1

101 Mother Board 2900 999

103 ZIP drive 250 14

106 DVD drive 900 12

and a corresponding table of customer purchases, purchases.

PROD_1ID CUSTOMER PRODUCT city

101 James Hoog Mother Board New York
101 James Hoog ZIP drive Los Angeles
103 Mc Lyon ZIP drive Pittsburgh

Notice that in item mast, the same product can appear multiple times (listed under
different manufacturers). Also, in database purchases the same customer can appear

4

multiple times. If we join carefully using select columns, we can identify observations
uniquely in the resulting output table. However, suppose we join the two tables only
on itemmast: product, product price and purchases: customer,
product.

Draw a sample table describing what the output looks like, and explain the result.

. Implement logistic regression using tensorflow. Use the following code to generate
train and test data. Note that we have set seed (using "random state=42"). Use
cross-entropy loss and gradient descent optimizer with a learning rate of 0.01. Use
batch_size of 100, and run for 500 steps. Report the accuracy on test set.

