
CME 323: Distributed Algorithms and Optimization, Spring 2020

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 14, 5/14/2020. Scribed by Andreas Santucci, Edited by Robin Brown.

14 Outline

• Map reduce and indexing

• Sparse matrix multiplication using SQL

• Joins using map reduce

14.1 Map Reduce

Recall what map reduce does: it’s a tool for putting pairs that have the same key together. The

map reduce environment gave the following promise:

• Map phase: emits pairs of the form 〈key, value〉 (shuffle).

• Shuffle phase: places pairs with the same key on a single machine.

• Reduce phase: performs computations on pairs with the same key.

On the face of it, this may look trivial, however, this construct is powerful. If your write your code

according to this contract you get fault tolerance, you get distribution, and utilization of all cores

in the cluster.

Example Suppose we’ve indexed the web by crawling it with a thousand machines. So now each

machine has stored on it a part of the web; each machine is full of HTML and pointers to other

HTML pages. From this, we’d like to build a search engine kind of like Google. So, how can we

apply map reduce to a search engine? Given a key word, we need to be able to very quickly figure

out which web-pages have that key in them; this is the most basic search engine functionality. If

we have an inverted-index, we can do this efficiently.

An inverted-index is a list of words, where each word is associated with the pages it occurs in.

So, we’d like to get to a point where we have a list

wordi → {page1, page2, . . .}

How can we create such an index using map reduce? All we have is a jumble of web-pages,

and we want a map between the word itself and the pages on which it occurs. We only have one

hammer at our disposal, map-reduce, which puts pairs with the same key together. So, naturally,

the key should be the word itself, and the value should be the url.

1

http://stanford.edu/~rezab/dao
https://en.wikipedia.org/wiki/Inverted_index

// Map phase

1 for w ∈ H do

2 emit (w, huid)

3 end

// Reduce phase

4 Reduce(w, 〈url1,url2, . . . , 〉)
Algorithm 1: Mapper

So, each mapper will examine the web-page that it has been given. For each word in the

web-page, emit the word as the key and the url as the value.

The above code is low-level, and can be tedious to write ourselves. Instead, we move onto SQL,

and specifically multiplying sparse matrices.

14.2 Sparse Matrix-Vector Multiply using SQL

First of all, let’s figure out how our matrix is represented. Since our matrix M is sparse, we need

the following representation

(i, j, value)

i.e. for each non-zero entry we store the row and column indices alongside the corresponding value.

A sparse vector x is represented as (i, value).

Now, imagine that our matrix is an SQL table, where the columns in the table is i, j, and the

value; similarly for our matrix, represented as a table with a column for the i index and a column

for the value.

How can we compute Mx using SQL operations?1 We realize that if Mx = b, then each entry

of b an inner product between corresponding row of M and vector x. But how can we prepare these

dot-products? We first perform a join on M and x where we join M on its column index j and x

on its element index i. Our resulting table looks like

M.j(xi) M.i M.value x.value

Notice that where there are duplicates in our join, a cartesian product will appear. I.e. for

every single entry in matrix M , we will get the corresponding value from vector x.

M =

i j value

1 2 17.5

2 2 16.3

x =

i value

1 2.71

2 3.14

1First attempt: We can first group by i on matrix table M ; at this point, each entry in the resulting table will

correspond to a row in M , where the value is a function of the values in the columns of M for said row. When we do

a group-by, we need to specify what kind of aggregation function we perform to combine the values for a particular

group. What kind of aggregation should we use? We abandon this approach.

2

The resulting table after our inner-join

M.j(xi) M.i M.value x.value

2 1 37.5 3.14

2 2 18.3 3.14

The second SQL statement simply adds a new column onto this table. Thew column will look

like

M.j(xi) M.i M.value x.value mult

2 1 37.5 3.14 37.5× 3.14

2 2 18.3 3.14 . . .

We’ve done the multiplication in each dot-product. Now we need to perform the summation,

i.e. perform a group by i and sum over our column mult which we added above. We’d like to take

all of the multiplications that are associated with a particular dot-product and sum them up, so

our aggregation function is a summation on mult. Notice that we only need as output the index i

and corresponding value of Mx, so we can remove other columns.

Now that we’ve done this in SQL, how can we do this in map-reduce?

14.3 SQL Group-by using map reduce

We first implement a group-by, which groups all rows that have the same key and performs an

aggregation function on remaining columns. A map reduce is just that. To implement a group-by

using map reduce, all we have to do is

1 emit the group-by column as key

2 perform desired aggregation function on non-group-by columns in the reducer
Algorithm 2: group by using map reduce

Let’s walk through an example. Suppose we have the following table.

a b

1 1

1 2

3 3

4 5

5 11

We wish to group-by a and sum elements in column b. How can we do this in map reduce?

Each row assumed to be an input to a mapper.

Group-by a

sum(b)

So, a map reduce is essentially a group-by; they’re effectively the same.

3

14.4 SQL (inner) join using map reduce

This is much more difficult than a group-by. There are several cases:

• both tables are so large that neither will fit on a single machine, and

• one table is small enough to fit locally.2

The implementations for these two cases are very distinct. In our join, we need to respect the

duplicity of the keys. I.e. we must perform the cross-product with all entries appearing in the other

table with the same key.

The case when one table fits in memory Suppose we want to merge tables T1 and T2, where

table T1 is small enough to fit in memory. For the sake of discussion, let’s suppose that each table

has two columns.

T1 =
a b

, T2 =
i j

Do we even need a cluster to perform this? Yes, we definitely need a distributed environment,

since the resulting join could be larger than table B. But do we need to perform our sorting

operation on our tables? No, we will see that we actually don’t need this.

We first broadcast T1 to all machines via a bit-torrent broadcast. Now, each machine has a

full-on copy of table T1. For fast look-up, we place T1 into a hash-table.

1 Place T1 in a hash-table for fast look-up

2 Place hashed T1 on each machine via a broadcast

3 Perform an inner join of whatever data in T2 is stored locally on each machine with its

local copy of (hashed) T1

Algorithm 3: (Hash or Broadcast) Inner Join

Each machine does a join of what it owns from T2 with all-of T1. We don’t even need to

communicate this result to other machines, we can just leave the merged data local. The inner join

that is performed locally on each machine can be done just as we did on the midterm. We assume

that the resulting table can be fit on each machine; in the event that we have a cross-product which

blows up our table, we would just start assuming that T1 so large it can’t fit on a single machine.

We cover this case next, i.e. the case where neither table can fit locally.

14.5 Computations on Matrices with Spark

14.5.1 Distributed Matrices

In Spark, matrices are typically stored broken up for storage in three different ways:

2A third case is actually that both tables can fit on a single machine. This is covered by our PRAM model, and

we saw this exact question on the midterm.

4

• By entries (CoordinateMatrix): stored as a list of (i, j, value) tuples

• By rows (RowMatrix): each row is stored separately (e.g. Pagerank)

• By blocks (BlockMatrix): by storing submatrices of a matrix as dense matrices, block matrices

can take advantage of low-level linear algebra library for operations like multiplications.

14.5.2 RowMatrix × LocalMatrix

When multiplying a RowMatrix with a small local matrix, we broadcast the entire small matrix

to each machine that contains different parts of the RowMatrix and perform multiplications on

each machine. Currently, Spark uses BLAS level 1 optimization, which optimizes for vector-vector

multiplications during the multiplication.

rows are distributed




rT1
rT2
...

rTn


 l1 l2 . . . lm



14.5.3 CoordinateMatrix × CoordinateMatrix

CoordinateMatrix is used to represent sparse matrices, and is stored as a list of (row, column,

value) entries. To perform matrix multiplication of two Coordinate Matrix elements C = AB, one

can summarize the procedure as follows:

input: A : {(i, j, Aij)|Aij 6= 0}, B : {(i, j, Bij)|Bij 6= 0}
J ← Join A,B on a.j and b.i for a ∈ A, b ∈ B

M ← For each j ∈ J , map it to (key, value) where key=(a.i, b.j) and value=a.val × b.val

C ← Reduce M with “+”
Algorithm 4: CoordinateMatrix Multiplication

Unfortunately, Spark does not have CoordinateMatrix multiplication implemented in the cur-

rent library. One possible implementation with Scala, when assuming the matrices are stored as

RDD[MatrixEntry(i, j, value)] is shown below

import org.apache.spark.mllib.linalg.distributed._

val n = 10 // one dimension of the matrix

val range = sc.parallelize({1 to n * n})

// Generate two random sparse matrices of size nxn

val A = range.sample(false, 0.2).map(i => MatrixEntry(i / n, i % n, i))

val B = range.sample(false, 0.2).map(i => MatrixEntry(i / n, i % n, i))

// Perform multiplication

5

val C = A.map(e => (e.j, e)).join(B.map(e => (e.i, e)))

.map(p => ((p._2._1.i, p._2._2.j), p._2._1.value * p._2._2.value))

.reduceByKey(_ + _).map(p => MatrixEntry(p._1._1, p._1._2, p._2))

Effectively, for each 1 ≤ i ≤ n, we first join all entries of matrix A on the i-th column with the

entries of matrix B on the i-th row, which would create a Cartesian product of two sets of entries

for each i. The resulting set contains all possible pairs of entries that would’ve been multiplied

together during a normal matrix multiplication, and each pair of entries is keyed by their shared

dimension during the dot product operation. We then remap each element in this set by its position

in the result matrix and change its value to the product of the two entries and then reduce each

result position with the addition operator. This effectively simulates the dot product operation.

Finally, we remap the result to the desired format.

14.5.4 BlockMatrix × BlockMatrix

In some cases, we’d like to multiply two dense matrices for which the rows and columns may

themselves be too large to fit in memory on a single machine. By partitioning our matrices into

blocks that do fit on a single machine - encoding each one as a BlockMatrix - and performing

multiplication on their partitions, we can manage to perform matrix computation on the larger

matrices. Using BlockMatrix, we also have the ability to push down the smaller block matrix

multiplications to the CPU/GPU directly using Basic Linear Algebra Subprograms (BLAS) routines

- as mentioned above, Spark currently uses BLAS level 1 for matrix multiplication. To perform

block matrix multiplication, we partition both matrices appropriately so their blocks are equally

sized within each matrix, aligned in size across matrices, and so that a single block from each matrix

fits together on a single machine. Following partitioning, block multiplication proceeds similarly to

coordinate multiplication. Each matrix is flatmapped to produce a list of blocks for multiplication

- each block in the first matrix A is effectively copied as many times as the number of columns

in the second matrix B, and each block in B is effectively copied as many times as the number of

rows in A. Following the flatmap, a cogroup is used to send pairs of complementary blocks that will

need to be multiplied to an individual machine, where the multiplication is pushed down to the

CPU/GPU level using BLAS. Finally, results of the individual block multiplications corresponding

to each block entry in the resulting matrix are sent to the same machine with ReduceByKey and

summed up. A simplified version of the Spark code for block matrix multiplication is presented

below:

def multiply(other: BlockMatrix): BlockMatrix = {

// Get partitions

val resultPartitioner = GridPartitioner(numRowBlocks, other.numColBlocks,

math.max(blocks.partitions.length, other.blocks.partitions.length))

// Each block of A must be multiplied with the corresponding blocks

// in each column of B.

6

val flatA = blocks.flatMap {

case ((blockRowIndex, blockColIndex), block) =>

Iterator.tabulate(other.numColBlocks)

(j => ((blockRowIndex, j, blockColIndex), block))

}

// Each block of B must be multiplied with the corresponding blocks

// in each row of A.

val flatB = other.blocks.flatMap {

case ((blockRowIndex, blockColIndex), block) =>

Iterator.tabulate(numRowBlocks)

(i => ((i, blockColIndex, blockRowIndex), block))

}

// Cogroup and multiply block pairs

val newBlocks: RDD[MatrixBlock] = flatA.cogroup(flatB, resultPartitioner)

.flatMap { case ((blockRowIndex, blockColIndex, _), (a, b)) =>

if (a.nonEmpty && b.nonEmpty) {

val C = b.head match {

case dense: DenseMatrix => a.head.multiply(dense) // Uses BLAS 1

case sparse: SparseMatrix => a.head.multiply(sparse.toDense)

}

Iterator(((blockRowIndex, blockColIndex), C.toBreeze))

} else {

Iterator()

}

}

// Sum up matrices for each block entry of C

.reduceByKey(resultPartitioner, (a, b) => a + b)

.mapValues(Matrices.fromBreeze)

}

7

	14 Outline
	14.1 Map Reduce
	14.2 Sparse Matrix-Vector Multiply using SQL
	14.3 SQL Group-by using map reduce
	14.4 SQL (inner) join using map reduce
	14.5 Computations on Matrices with Spark
	14.5.1 Distributed Matrices
	14.5.2 RowMatrix LocalMatrix
	14.5.3 CoordinateMatrix CoordinateMatrix
	14.5.4 BlockMatrix BlockMatrix

