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Notation for matrix A

Given m × n matrix A, with m� n.

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


A is tall and skinny, example values
m = 1012,n = {104,106}.
A has sparse rows, each row has at most L nonzeros.
A is stored across hundreds of machines and cannot
be streamed through a single machine.
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Computing AT A

We compute AT A.
AT A is n × n, considerably smaller than A.
AT A is dense.
Holds dot products between all pairs of columns of A.
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Guarantees

There is a knob γ which can be turned to preserve
similarities and singular values. Paying O(nLγ)
communication cost and O(γ) computation cost.

With a low setting of γ, preserve similar entries of AT A
(via Cosine, Dice, Overlap, and Jaccard similarity).
With a high setting of γ, preserve singular values of
AT A.
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Computing All Pairs of Cosine Similarities

We have to find dot products between all pairs of
columns of A
We prove results for general matrices, but can do better
for those entries with cos(i , j) ≥ s
Cosine similarity: a widely used definition for “similarity"
between two vectors

cos(i , j) =
cT

i cj

||ci ||||cj ||

ci is the i ′th column of A
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Example matrix

Rows: users.
Columns: movies.
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Distributed Computing Environment

With such large datasets, we must use many machines.
Algorithm code available in Spark and Scalding.
Described with Maps and Reduces so that the
framework takes care of distributing the computation.
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Naive Implementation

1 Given row ri , Map with NaiveMapper (Algorithm 1)
2 Reduce using the NaiveReducer (Algorithm 2)

Algorithm 1 NaiveMapper(ri)

for all pairs (aij ,aik ) in ri do
Emit ((j , k)→ aijaik )

end for

Algorithm 2 NaiveReducer((i , j), 〈v1, . . . , vR〉)

output cT
i cj →

∑R
i=1 vi
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Analysis for First Pass

Very easy analysis
1) Shuffle size: O(mL2)

2) Largest reduce-key: O(m)

Both depend on m, the larger dimension, and are
intractable for m = 1012,L = 100.
We’ll bring both down via clever sampling
Assuming column norms are known or estimates
available
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Dimension Independent Matrix Square using MapReduce

Algorithm 3 DIMSUMMapper(ri)

for all pairs (aij ,aik ) in ri do

With probability min
(

1, γ 1
||cj ||||ck ||

)
emit ((j , k)→ aijaik )

end for

Algorithm 4 DIMSUMReducer((i , j), 〈v1, . . . , vR〉)

if γ
||ci ||||cj || > 1 then

output bij → 1
||ci ||||cj ||

∑R
i=1 vi

else
output bij → 1

γ

∑R
i=1 vi

end if
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Analysis for DIMSUM

The algorithm outputs bij , which is a matrix of cosine
similarities, call it B.
Four things to prove:

1 Shuffle size: O(nLγ)

2 Largest reduce-key: O(γ)

3 The sampling scheme preserves similarities when
γ = Ω(log(n)/s)

4 The sampling scheme preserves singular values when
γ = Ω(n/ε2)
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Shuffle size for DIMSUM

O(nLγ) has no dependence on the dimension m, this is
the heart of DIMSUM.
Happens because higher magnitude columns are
sampled with lower probability:

γ
1

||c1||||c2||
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Shuffle size for DIMSUM

For matrices with real entries, we can still get a bound
Let H be the smallest nonzero entry in magnitude, after
all entries of A have been scaled to be in [−1,1]

E.g. for {0,1} matrices, we have H = 1
Shuffle size is bounded by O(nLγ/H2)
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Largest reduce key for DIMSUM

Each reduce key receives at most γ values (the
oversampling parameter)
Immediately get that reduce-key complexity is O(γ)

Also independent of dimension m. Happens because
high magnitude columns are sampled with lower
probability.
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Correctness

Since higher magnitude columns are sampled with
lower probability, are we guaranteed to obtain correct
results w.h.p.?
Yes. By setting γ correctly.
Preserve similarities when γ = Ω(log(n)/s)

Preserve singular values when γ = Ω(n/ε2)
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Correctness

Theorem

Let A be an m × n tall and skinny (m > n) matrix. If
γ = Ω(n/ε2) and D a diagonal matrix with entries dii = ||ci ||,
then the matrix B output by DIMSUM satisfies,

||DBD − AT A||2
||AT A||2

≤ ε

with probability at least 1/2.

Relative error guaranteed to be low with constant probability.
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Proof

Uses Latala’s theorem, bounds 2nd and 4th central
moments of entries of B.
Really need extra power of moments.
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Latala’s Theorem

Theorem
(Latala’s theorem). Let X be a random matrix whose entries
xij are independent centered random variables with finite
fourth moment. Denoting ||X ||2 as the matrix spectral norm,
we have

E ||X ||2 ≤ C[max
i

∑
j

E x2
ij

1/2

+ max
j

(∑
i

E x2
ij

)1/2

+

∑
i,j

E x4
ij

1/4

].
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Proof

Prove two things
E[(bij − Ebij)

2] ≤ 1
γ (easy)

E[(bij − Ebij)
4] ≤ 2

γ2 (not easy)

Details in paper.
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Correctness

Theorem

For any two columns ci and cj having cos(ci , cj) ≥ s, let B
be the output of DIMSUM with entries bij = 1

γ

∑m
k=1 Xijk with

Xijk as the indicator for the k’th coin in the call to
DIMSUMMapper. Now if γ = Ω(α/s), then we have,

Pr
[
||ci ||||cj ||bij > (1 + δ)[AT A]ij

]
≤
(

eδ

(1 + δ)(1+δ)

)α
and

Pr
[
||ci ||||cj ||bi,j < (1− δ)[AT A]ij

]
< exp(−αδ2/2)

Relative error guaranteed to be low with high probability.
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Correctness

Proof.
In the paper
Uses standard concentration inequality for sums of
indicator random variables.
Ends up requiring that the oversampling parameter γ
be set to γ = log(n2)/s = 2 log(n)/s.
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Observations

DIMSUM helpful when there are some popular columns
e.g. The Netflix Matrix (some columns way more
popular than others)
Power-law columns are effectively neutralized
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In practice

Forget about theoretical settings for γ
Crank up γ until application works
Estimates for ||ci || can be used, expectations still hold,
but concentration isn’t guaranteed
If using for singular values, watch for ill-conditioned
matrices
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Experiments

Large scale production live at twitter.com

Smaller scale experiment with columns as words, and
rows as tweets
m = 200M,n = 1000,L = 10
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Experiments
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DISCO Cosine Similarity

Figure : Average error for all pairs with similarity threshold s.
Error decreases for more similar pairs. γ = 200
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Other Similarity Measures

Picking out similar columns work for some other similarity
measures.

Similarity Definition Shuffle Size Reduce-key size
Cosine #(x,y)√

#(x)
√

#(y)
O(nL log(n)/s) O(log(n)/s)

Jaccard #(x,y)
#(x)+#(y)−#(x,y) O((n/s) log(n/s)) O(log(n/s)/s)

Overlap #(x,y)
min(#(x),#(y)) O(nL log(n)/s) O(log(n)/s)

Dice 2#(x,y)
#(x)+#(y) O(nL log(n)/s) O(log(n)/s)

Table : All sizes are independent of m, the dimension.
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Locality Sensitive Hashing

MinHash from the Locality-Sensitive-Hashing family
can have its vanilla implementation greatly improved by
DIMSUM.
Another set of theorems for shuffle size and
correctness in DISCO paper.
stanford.edu/~rezab/papers/disco.pdf
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Conclusion

Consider DIMSUM if you ever need to compute AT A for
large sparse A
Many more experiments and results in paper at
stanford.edu/~rezab

Thank you!
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Shuffle size for DIMSUM

Theorem

For {0,1} matrices, the expected shuffle size for
DIMSUMMapper is O(nLγ).

Proof.
The expected contribution from each pair of columns will
constitute the shuffle size:

n∑
i=1

n∑
j=i+1

#(ci ,cj )∑
k=1

Pr[DIMSUMEmit(ci , cj)]

=
n∑

i=1

n∑
j=i+1

#(ci , cj)Pr[DIMSUMEmit(ci , cj)]

Reza Zadeh (Stanford) Dimension Independent Matrix Square 18 June 2014 29 / 33



Dimension
Independent

Matrix Square

Reza Zadeh

Shuffle size for DIMSUM

Proof.

≤
n∑

i=1

n∑
j=i+1

γ
#(ci , cj)√

#(ci)
√

#(cj)

(by AM-GM) ≤ γ

2

n∑
i=1

n∑
j=i+1

#(ci , cj)(
1

#(ci)
+

1
#(cj)

)

≤ γ
n∑

i=1

1
#(ci)

n∑
j=1

#(ci , cj)

≤ γ
n∑

i=1

1
#(ci)

L#(ci) = γLn
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Combiners

All bounds are without combining: can only get better
with combining
For similarities, DIMSUM (without combiners) beats
naive with combining outright
For singular values, DIMSUM (without combiners)
beats naive with combining if the number of machines
is large (e.g. 1000)
DIMSUM with combining empirically beats naive with
combining
Difficult to analyze combiners since they happen at
many levels. Optimizations break models.
DIMSUM with combiners is best of both.
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With k machines
DIMSUM shuffle with combiner: O(min(nLγ, kn2))

DIMSUM reduce-key with combiner: O(min(γ, k))

Naive shuffle with combiner: O(kn2)

Naive reduce-key with combiner: O(k)

DIMSUM with combiners is best of both.
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Figure : As γ = p/ε increases, shuffle size increases and error
decreases. There is no thresholding for highly similar pairs here.
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