MLIIlb and Distributing the
Singular Value Decomposition

Reza Zadeh -—
DATABRICKS

K

INSTITUTE for COMPUTATIONAL &
MATHEMATICAL ENGINEERING Q r
at STANFORD UNIVERSITY

Outline

Example Invocations

Benefits of [terations

Singular Value Decomposition
All-pairs Similarity Computation
MLIib + {Streaming, GraphX, SQL]}

Future Directions

INntroduction

A General Platform

Standard libraries included with Spark

Spark MLIib
Streaming machine
real-time learning

Spark SQL

structured

Spark Core

MLIib History

MLlIib is a Spark subproject providing machine
learning primitives

Initial contribution from AMPLab, UC Berkeley

Shipped with Spark since Sept 2013

MLIIb: Avallable algorithms

classification: logistic regression, linear SVM,
naive Bayes, least squares, classification tree

regression: generalized linear models (GLMs),
regression tree

collaborative filtering: alternating least squares (ALS),
non-negative matrix factorization (NMF)

clustering: k-means||
decomposition: SVD, PCA
optimization: stochastic gradient descent, L-BFGS

Example Invocations

Example: K-means

// Load and parse the data.
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map(_.split(‘ ') .map(_.toDouble)).cache()

// Cluster the data into two classes using KMeans.
val clusters = KMeans.train(parsedData, 2, numlterations = 20)

// Compute the sum of squared errors.
val cost = clusters.computeCost(parsedData)
println(”Sum of squared errors = " + cost)

Example: PCA

// compute principal components

val points: RDD[Vector] = ...

val mat = RowRDDMatrix(points)

val pc = mat.computePrincipalComponents(20)

// project points to a low-dimensional space
val projected = mat.multiply(pc).rows

// train a k-means model on the projected data
val model = KMeans.train(projected, 10)

Example: ALS

// Load and parse the data
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(’,’) match {
case Array(user, item, rate) =>
Rating(user.tolnt, item.tolInt, rate.toDouble)

1

// Build the recommendation model using ALS
val model = ALS.train(ratings, 1, 20, 0.01)

// Evaluate the model on rating data
val usersProducts = ratings.map { case Rating(user, product, rate) =>
(user, product)

}

val predictions = model.predict(usersProducts)

Benefits of fast iterations

Optimization

At least two large classes of optimization
problems humans can solve:

- Convex Programs

- Singular Value Decomposition

Optimization - LR

data = spark.textFile(...).map(readPoint).cache()
w = numpy.random.rand(D)

for i in range(iterations):
gradient = data.map(lambda p:
(1 / (1 + exp(-p.y * w.dot(p.x)))) * p.y * p.x
).reduce(lambda a, b: a + b)
w -= gradient

print “Final w: %s” % w

MR PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page

adjacency lists and rank vector

Same file grouped
over and over

Neighbors
(id, edges)

Ranks
(id, rank) .

iteration 1 iteration 2 iteration 3

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

rtitionBy .
s®
Neighbors @ \
(id, edges)
@%\\ A\
= Ve \
Ranks
(id, rank) E

join join join

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

Neighbors
(id, edges)

Ranks
(id, rank)

N

partitionBy g

@
@
@

e
AR\ e

Spark PageRank

Using cache(), keep neighbor lists in RAM

Using partitioning, avoid repeated hashing

partitionBy g

C

Neighbors @ 'ﬁ \

(id, edges) b 0‘ ’ \ \\ \
= A\ N\

S A
[D= = .

join join join

Ranks
(id, rank)

(X

PageRank Code

RDD of (id, neighbors) pairs
links = spark.textFile(...).map(parsePage)
.partitionBy(128).cache()

ranks = links.mapValues(lambda v: 1.0) # RDD of (id, rank)

for i in range(ITERATIONS):
ranks = links.join(ranks).flatMap(
lambda (id, (links, rank)):
[(d, rank/links.size) for d in links]
) .reduceByKey(lambda a, b: a + b)

Generalizes to Matrix Multiplication, opening many algorithms
from Numerical Linear Algebra

PageRank Results

Time per iteration (s)

200

—
o)
@)

—_—
o
o

o)
o

o

171

23

“ Hadoop

W Basic Spark

Spark + Controlled
Partitioning

Deep Dive: Singular Value Decomposition

Singular Value
Decomposition

Two cases: Tall and Skinny vs roughly Square

computeSVD function takes care of which
one to call, so you don’t have to.

SVD selection

if (n< 100 || k >n/ 2) {
// If n is small or R is lLarge compared with n, we better compute the Gramian matrix first
// and then compute its eigenvalues locally, instead of making multiple passes.
if (k< n/ 3){
SVDMode.LocalARPACK
} else {
SVDMode.LocalLAPACK
}
} else {
// If R is small compared with n, we use ARPACK with distributed multiplication.
SVDMode .DistARPACK

Tall and Skinny SVD

@ Given m x n matrix A, with m > n.

@ We compute AT A.
@ ATAis n x n, considerably smaller than A.

e A’ Ais dense.
@ Holds dot products between all pairs of columns of A.

A=UxV" ATA = ve2v?

Square SVD via ARPACK

Very mature Fortran/7 package for
computing eigenvalue decompositions

K,=1[Ab A% ... A"
JNI interface available via netlib-java

Distributed using Spark distributed matrix-
vector multiplies!

Deep Dive: All pairs Similarity

Deep Dive: All pairs Similarity

Compute via DIMSUM: “Dimension
Independent Similarity Computation using
MapReduce”

Will be in Spark 1.2 as a method in RowMatrix

All-pairs similarity computation

@ Given m x n matrix A, with m > n.

/31,1 a2 v 31,n\
do1 dop2 '+ donp
A=\ | . .
\am,1 dm2 *°* dmn)

@ Ais tall and skinny, example values m= 102, n = 108
@ A has sparse rows, each row has at most L nonzeros.

@ A s stored across hundreds of machines and cannot
be streamed through a single machine.

Naive Approach

Algorithm 1 NaiveMapper(r;)

for all pairs (aj;, ai) in r; do
Emit ((/, k) — ajaix)
end for

Algorithm 2 NaiveReducer((/,j), (v1,...,VR))

T o, Ry
outputc/ci — > i1V

Naive approach: analysis

@ Very easy analysis

@ 1) Shuffle size: O(mL?)

@ 2) Largest reduce-key: O(m)

@ Both depend on m, the larger dimension, and are
intractable for m = 102, L = 100.

@ We’'ll bring both down via clever sampling

@ Assuming column norms are known or estimates
available

DIMSUM Sampling

Algorithm 3 DIMSUMv2Mapper(r;)

for all a,-j IN I do

With probability min (1, ||ﬁ|)
for all a in r; do
With probability min (1 L)

> J[ex]|

. djidjk
emit ((j, k) = wcoaTel mintzs e
end for

end for

DIMSUM Analysis

The algorithm outputs b;;, which is a matrix of cosine
similarities, call it B.
Four things to prove:

@ Shuffle size: O(nly)
@ Largest reduce-key: O(7)

© The sampling scheme preserves similarities when
v = Q(log(n)/s)

© The sampling scheme preserves singular values when
v = Q(n/€®)

DIMSUM Proof

_Theorem

For any two columns c¢; and c; having cos(c;, ¢;) > s, let B
be the output of DIMSUM with entries b = 1 >~y Xji with
Xiik as the indicator for the k’th coin in the call to
DIMSUMMapper. Now if v = Q(a/s), then we have,

e’ “
Pr [||Ci||||Cj||bij > (1 +5)[ATA]ij] < ((1 +5)(1+5))

and

Pr{l[eillllgillbi; < (1 = O)ATAly| < exp(—as?/2)

Relative error guaranteed to be low with high probability.

Spark implementation

Magnitudes shipped with every task

Makes life much easier than e.g. MapReduce

Ongoing Work in MLIib

multiclass decision trees

stats library (e.g. stratified sampling, ScaRSR)
ADMM

DA

All-pairs similarity (DIMSUM)

General Convex Optimization

MLIib + {Streaming, GraphX, SQL}

MLIlib + Streaming

As of Spark 1.1, you can train linear models in
a streaming fashion

Model weights are updated via SGD, thus
amenable to streaming

More work needed for decision trees

MLIIb + SQL

points = context.sql(“select latitude, longitude from tweets”)

model = KMeans.train(points, 10)

MLIib + GraphX

val graph = Graph(pages, 1links)
val pageRank: RDD[(Long, Double)] = graph.staticPageRank(10).vertices

val labelAndFeatures: RDD[(Long, (Double, Seq((Int, Double)))] = ...
val training: RDD[LabeledPoint] =
labelAndFeatures. join(pageRank) .map {
case (id, ((label, features), pageRank)) =>
LabeledPoint(label, Vectors.sparse(features ++ (1000, pageRank))

val model = LogisticRegressionWithSGD.train(training)

Future of MLIIb

General Convex Optimization

from cvxpy import *

Create two scalar optimization variables.

Distribute CVX by x = Variable()
. . - Variabl
backing CVXPY with At
Create two constraints.
PySpark constraints = [x + y == 1,
X -y > 1]
Easy-to-express # Form objective.
distributable convex B = RS = o

prog rams # Form and solve problem.

prob = Problem(obj, constraints)
prob.solve() # Returns the optimal value.
print "status:", prob.status

Need to know less print "optimal value", prob.value
math to Optimize print "optimal var", x.value, y.value

complicated status: optimal

. . optimal value 0.999999989323
ObJECtlves optimal var ©.999999998248 1.75244914951e-09

Spark and ML

Spark has all its roots in research, so we hope
to keep incorporating new ideas!

Next Speakers

Ameet: History of MLIlib and the research on it
at Berkeley

Ankur: Graph processing with GraphX

TD: Spark Streaming

